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Introduction

To explore the fundamental components of matter and the laws governing their
interactions, large research infrastructures have been established.

The European Organization for Nuclear Research, known as CERN, is a world-
leading research center where scientists investigate the fundamental laws of matter.
The Large Hadron Collider (LHC) is the most powerful particle accelerator ever
built, with a center-of-mass energy of nearly 14 TeV. Inside the LHC, two beams
of protons collide at four interaction points, where large detectors are placed to
study the results. One of these detectors is the Compact Muon Solenoid (CMS),
a general-purpose experiment designed to explore the Standard Model and search
for new physics.

At the CMS interaction point, proton bunches collide every 25 ns, with each
bunch containing approximately 1.5 × 10¹¹ protons. On average, about 20 effective
collisions occur per bunch crossing, leading to around 600,000 collisions per second.
These collisions create new particles, which decay into ’stable’ particles such as
photons, electrons, hadrons, neutrinos, and muons, which can then be detected.

Muons, being minimal ionizing particles, pass through most of the detector
and reach its outermost layers. To detect them, CMS has a dedicated muon
system consisting of four types of gaseous detectors: Resistive Plate Chambers
(RPCs), Cathode Strip Chambers (CSCs), Drift Tubes (DTs), and Gas Electron
Multipliers (GEMs). These detectors are located in different regions of the muon
system, either in the barrel or in the endcap.

RPCs, which are present in both the barrel and endcap, play a crucial role in
the trigger system due to their high time resolution. This allows them to accu-
rately assign muons to the correct bunch crossing. Their performance depends on
the applied high voltage between their resistive electrodes. To ensure optimal op-
eration, a procedure called a high-voltage (HV) scan is performed at the beginning
of each year of data collection. The HV scan measures the efficiency and cluster
size of the detectors over a range of voltages, and after the data is analyzed, the
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correct working points are set in the system.

For years, parts of this analysis have been carried out manually, making the
process time-consuming. The goal of this Master’s thesis is to automate the HV
scan calibration procedure for CMS RPCs using machine learning.

The Master thesis is structured into five chapters. It begins with an introduc-
tion to the LHC and CMS. Next, it covers RPCs and their role in muon detection.
Key theoretical concepts, including autoencoders and the Discrete Cosine Trans-
form, are then introduced. Finally, the thesis presents the automation of CMS
RPC high-voltage scan analysis using machine learning, detailing the implemented
solution and developed software.
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1 The Large Hadron Collider and the Compact

Muon Solenoid

1.1 LHC

In 1932, Cockcroft and Walton built the first particle accelerator and achieved
the first splitting of a lithium nucleus using a 400 keV proton beam [1]. Their device
operated on the principle that the energy gained by a particle in an electrostatic
electric field is determined by the applied voltage and the charge of the particle,
expressed as:

∆E = q∆U (1)

It was a simple voltage multiplier, consisting of diodes and capacitors, that con-
verted an AC voltage into a DC voltage. The terminal voltage achieved was a
multiple of the applied voltage. This type of device was used for many years at
CERN and is now displayed outside Building 143 (Fig. 1).

Figure 1: Cockcroft-Walton generator (600 kV) built by Philips, used in 1964 as
a high-voltage supply for the 3 MeV Linac pre-injector to the proton synclotron
Image by CERN.
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This groundbreaking achievement marked the beginning of the development of
increasingly powerful particle accelerators. In 2000, the construction of the LHC
began, which remains the most powerful accelerator on Earth, with a center-of-
mass energy of 14 TeV.

The LHC has a circumference of 27 km and surrounds an area of approximately
60 km2 (Fig. 2 shows how LHC would fit within Sofia).

Figure 2: A visualization showing how the LHC would span across Sofia, based on
the interactive map tool [2].

It is designed to collide head-on two beams of particles, either proton-proton
or lead-lead. The dipole magnets that guide the protons in their orbit and the ra-
diofrequency cavities that accelerate them are among the most powerful on Earth,
allowing each proton to reach an energy of 7 TeV. Compared to fixed-target ex-
periments, head-on collisions provide much higher energies in the center-of-mass
frame, given by the formula

√
s = 2

√
E1E2. This allows access to a wider range

of masses for newly produced particles. In fixed-target collisions, the formula be-
comes

√
s = 2

√
E1m2, where E1 is the total energy of the moving particle and m2

is the rest mass of the target particle. Achieving such high energies would require
an extremely high E1, which is technically very challenging.
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Except for the type of particles being accelerated and the energy in the center-
of-mass frame, another key characteristic of an accelerator is the instantaneous
luminosity or just luminosity, which corresponds to the number of interactions
between particles in crossing bunches. The average number of interactions per
bunch crossing detected by an experiment is referred to as a ’pileup’. Luminosity
is measured in cm−2s−1 and indicates the rate at which interactions are produced:

dN

dt
= Linstσ (2)

where dN
dt

represents the number of interactions per second, and σ is the cross sec-
tion for a specific process occurring during the interaction of two colliding particles.
For example, knowing the cross section for Standard Model Higgs boson produc-
tion at

√
s = 13.6TeV, Eq. 2 can be used to calculate the expected number of

Higgs bosons produced per second. For the LHC, the instantaneous luminosity for
proton-proton colliding bunches is 1034 cm−2 s−1, while for lead-lead interactions, it
is 1027 cm−2 s−1. Integrating instantaneous luminosity over time (Eq. 3) yields the
integrated luminosity which corresponds to the amount of data delivered by the
accelerator or the total number of interactions for some period of time. Integrated
luminosity is measured in fb−1, where 1 b = 10−24 cm2. The term ’barn’ originates
from the Manhattan Project during World War II, where the exact value of 1 barn
was classified information, as it corresponded to the effective cross-section of a
uranium nucleus for neutron-induced fission.

L =

∫
Linstdt (3)

Since protons and heavy ions are significantly accelerated before reaching the LHC,
it is part of the CERN’s accelerator complex, as shown on Fig. 3. Both proton and
heavy-ion beams are accelerated by the Proton Synchrotron (PS) and then by the
Super Proton Synchrotron (SPS) before being fed into the LHC. The difference
lies in the initial stages: protons are first accelerated by LINAC4 and then by the
Proton Synchrotron Booster (PSB), which injects protons into the PS at an energy
of about 1.4 GeV. In contrast, lead ions are initially accelerated in LINAC3 and
then in the Low Energy Ion Ring (LEIR) before reaching the PS with an energy
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Figure 3

of 72 MeV per nucleon.

For accelerating the particles, the LHC uses a set of 8 radiofrequency (RF)
cavities per beam (Fig. 4), each delivering 2 MV across a 0.4 m gap, so in total, a
proton gains 16 MeV per revolution. Given that a proton makes 11,245 revolutions
per second and needs to acquire 6.55 TeV of energy, in theory, it should take
about 36.4 seconds for the LHC to accelerate the protons. In practice, however,
it takes about 20 minutes because the protons are not fully affected by the total
accelerating voltage of the cavities.

For deflecting the beams, the LHC uses dipole magnets, each 15 meters long,
which generate a magnetic field of approximately 8.33 T, driven by a current of
nearly 12,000 A. Using Eqs. 4 and 5, the deflection angle ϕ of the particle generated
by each dipole magnet can be calculated, as shown in Eq. 6:
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r =
p

qB
(4) ϕ =

L

r
(5)

ϕ =
qLB

p
(6)

where r is the bending radius, B is the magnitude of the magnetic field, p is the
momentum of the particle, L is the length of the magnet, and q is the elementary
charge. By substituting B = 8.33T, L = 15m, p = 7TeV, and q = 1.6×10−19 C in
Eq. 6, we get for ϕ an angle of 0.29◦ or 0.0051 rad. To achieve a full 2π deflection

of the particles, approximately
2π

0.0051
≈ 1232 dipole magnets are required, which

is the actual number of dipole magnets used in the LHC. The trajectories of the
particles passing through all deflectors are closed, i.e circles, if their velocity vector
lies entirely in the horizontal plane. If their velocity has a y component, their
trajectories will not be stable, i.e. they will have a spiral-like motion that will not
close. This means that the beam will become more and more spread out every
time it passes through a deflector.

Figure 4: Four cavities make up one cryomodule. In total there are four cryomod-
ules in the LHC, two per beam.

To prevent the beam from diverging, quadrupole magnets have been installed
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Figure 5: Scheme of a dipole magnet in the LHC. The current flows in opposite
directions, creating a magnetic field vector that is perpendicular to the beam pipe.
Depending on their velocity vector, the particles are deflected either to the left or
to the right.

in the LHC. As can be seen in Fig. 6, the right one focuses the beam horizontally
and the left one vertically.

Figure 6: A scheme of а quadrupole magnets.

Quadrupoles are always in pairs because focusing the beam in one plane causes
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it to diverge in the other. They are often arranged in a FODO patterns, where
"F" stands for focusing vertically and defocusing horizontally, "D" is for focusing
horizontally and defocusing vertically, and "O" refers to a non-focusing section,
such as a deflecting magnet or drift space. An example of a FODO cell is shown
in Fig. 7.

Figure 7: An example of a FODO cell. There are also multipole magnets which
further focus the beams and also counteract effects such as electromagnetic inter-
actions between bunches.

Figure 8

Since the LHC is not a perfect
circle, it is made up of 8 arcs, each
2.45 km long, and 8 straight sec-
tors, each 545m in length. One
arc consists of 23 FODO cells, and
between each arc and the straight
sector are the transition regions,
also known as dispersion suppres-
sors. The LHC is further divided
into 8 octants (Fig: 8), where an
octant begins at the middle of one
arc and ends in the middle of the
next. Each octant includes one
straight sector along with its two
transition regions. Those straight

sectors serve specific purposes. Four of them are dedicated to key functions such
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as acceleration, beam dumping, or beam cleaning, while the remaining four are
located at the so-called interaction points, where the LHC’s four main experiments
take place.

The four experiments at the Large Hadron Collider (LHC) are ALICE, LHCb,
ATLAS, and CMS. The purpose of ALICE is to investigate the state of the early
universe, which is believed to be quark-gluon plasma, and to gain insights into
quark confinement. LHCb is designed to investigate CP violation or explain why
there is more matter than antimatter in the universe. ATLAS and CMS are
general-purpose detectors that explore a wide range of topics, from the Standard
Model (SM) of particle physics to Beyond the Standard Model (BSM) phenomena,
including dark matter and supersymmetric theories.

1.2 Compact Muon Solenoid (CMS)

As mentioned earlier CMS is one of the general purpose detectors at the LHC.
To increase the probability of detecting all long living particles and measure their
properties with good precision, CMS has a 4π geometry and is structured in layers.
The system nearest to the interaction point, and therefore the one exposed to
the highest levels of radiation, is the silicon tracker. This tracker is divided into
two subsystems: the pixel tracker (PIXEL) and the strip tracker (SiStrip). Its
primary function is to reconstruct the tracks of charged particles and accurately
measure their curvature in the magnetic field, allowing estimation of their charge
and momentum (Eq. 4).

The next system is the Electromagnetic Calorimeter (ECAL), which detects
and measures the energy deposited by electrons and photons. The cylindrical
barrel section contains 60,000 lead tungstate scintillating crystals, while the closing
parts, known as the endcap, include an additional 15,000 crystals. The third layer
is the Hadronic Calorimeter (HCAL), which measures the energy of hadrons. Like
the ECAL, the HCAL is also divided into barrel and endcap sections, consisting
of layers of brass or steel interleaved with plastic scintillators.
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The trackers and calorimeters are housed within a solenoid magnet that serves
as the backbone of the experiment. This magnet is the central component around
which the entire experiment is built, and it also provides most of the structural
support. It generates a magnetic field of nearly 4T that causes charged particles
to curve their trajectories. This, combined with high-precision measurements of
the particles’ positions, allows for a precise measurement of their momentum. The
magnet comprises cylindrical coils made of niobium-titanium (NbTi) that are cov-
ered with copper, through which a current of 20 kA flows. To produce such a strong
magnetic field, not only a significant current is required, along with extremely low
temperatures to minimize resistivity. The magnet is cooled to −268.5◦, only one
degree warmer than the temperature of outer space.

Figure 9: CMS barrel. The outermost red
layer is the muon system interleaved with the
iron return yoke. Calorimeters are the blue
cylinders hosted by the solenoid, and in yel-
low is the tracking system around the beam
pipe. Image by CERN.

The magnet coils are sur-
rounded by an iron structure that
not only contains and guides the
magnetic field but also interleaved
with the detectors of the muon sys-
tem. To track muons, which along
with neutrinos are the only parti-
cles that reach beyond the mag-
net, four types of gaseous detec-
tors have been installed in the out-
ermost layers of the experiment.
Drift Tubes (DTs) and Resistive
Plate Chambers (RPCs) are found
in the barrel, covering the low pseu-
dorapidity region. In contrast,
Cathode Strip Chambers paired
with RPCs cover the high pseudo-
rapidity region of the barrel. Dur-
ing Long Shutdown 2 (LS2), which
took place from 2018 to 2022, ad-

ditional types of detectors were installed to cover the pseudorapidity range of
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1.55 < η < 2.18. A total of 144 Gas Electron Multipliers (GEMs) were installed
at the GE1/1 detector station. Two more GEM stations, GE2/1 and ME0, are ex-
pected to be installed during LS3 with ME0 extending the pseudorapity coverage
up to η = 2.8 [3].

Figure 10: Slice showing CMS sub-detectors and how particles interact with them.
Image by CERN.

2 Resistive Plate Chambers (RPCs)

Despite the good spatial resolution, the limited time resolution of DTs and
CSCs introduces the need for another type of detector, the RPCs. These are
also gaseous detectors, but instead of generating a signal through the collection of
charge at an anode, as in wire chambers, the signal is induced in copper pickup
strips located outside the gas volume. This results from the changing electric field
caused by the movement of electrons and ions in the gas. The time resolution of
an RPC is approximately 1ns, while the time resolution for DTs and CSCs ranges
from 2 to 3 ns. Although this difference may seem minor, it becomes significant
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when considering the precision of the trigger system 12.5ns and the interval 25ns
between the crossings of the bunches [5]. A detector with better time resolution
can improve the assignment of detected muons to the correct bunch crossing.

Figure 11: Cross-section of a double-gap RPC. [4]

A single gap RPC con-
sists of two bakelite re-
sistive plates with a gap
filled with a gas mix-
ture of 95.2% C2H2F4 +

4.5% iC4H10 + 0.3% SF6.
However, in CMS, RPCs
are designed as double-gap
chambers (Fig. 11). There

are 1,056 RPCs in the barrel and endcap regions of the detector, spanning a pseu-
dorapidity range of 0 < η < 1.6 [5]. In addition to the Bakelite plates and the gas
gap, there are graphite layers to apply voltage and an insulating layer to prevent
charge leakage.

Once a particle transverses the gas volume, it interacts with the gas atoms
to produce electron-ion pairs (Fig. 12a), referred to as primary ionization. This
primary ionization then initiates an avalanche of such pairs, with the positive ions
moving toward the cathode and the electrons toward the anode. This avalanche
starts to locally influence the electric field (Fig. 12b).
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Figure 12: Different stages of avalanche development in an RPC where a constant
field of magnitude E0 is applied between the electrodes.

The electrons reach the anode first due to their higher drift velocity, followed by
the ions reaching the cathode (Fig. 12c). While the charges do not recombine
with the electrode material, the electric field remains locally affected, blinding the
detector in this region (Fig. 12d). The time constant that determines how long
the charge takes to recombine is a very important parameter of an RPC. By taking
a quasi-static approximation of Maxwell’s equations for weakly conducting media,
we can compute the time needed for recombination at the interface between the
gas and the electrode (Eq. 7). This can be seen more in depth in [6].

τRPC =
ϵe + ϵg
σe + σg

(7)

where ϵe and ϵg are the specific permittivity constants of the electrode and the gas,
and σe and σg are their conductivity constants. Approximating ϵg = ϵ0 and σg = 0,
and using ϵr = ϵeϵ0 and σe = 1/ρe, where ρe is the resistivity of the electrode, we
obtain:

τRPC = (ϵr + 1)ϵ0ρe (8)

Equation 8 demonstrates that the time required for recombination is proportional
to the material’s resistivity. The resistivity of materials used in RPCs typically
ranges from 109 to 1012Ωcm. While lower resistivity results in a longer recombi-
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nation time, this choice helps avoid distortion of the electric field across the entire
plates.

One important consideration is the width of the gas gap in the RPCs. Ex-
periments have shown that wider gaps can improve the detection rate of RPCs,
but they tend to decrease the time resolution. This led to the development of
multi-gap RPCs. By incorporating multiple narrower gaps, it became possible
to maintain excellent time resolution while simultaneously increasing the rate of
detected events.

Another consideration is the strength of the applied electric field. Initially,
RPCs operated in a streamer mode, which was convenient for readout since no ad-
ditional amplification was required. However, Crotty demonstrated that a weaker
electric field results in a weaker signal due to a smaller ion cloud and reduced
electronic gain which helps the avalanche be more localized and hence increase the
rate capability of the detector (Fig. 13).

Figure 13: Comparison of rate compatibility for the two modes of work of an RPC.
In avalanche mode, increasing the rate does not affect the efficiency of the chamber
as much as in ’spark’ mode [7].
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The efficiency of the RPCs in CMS is defined as the ratio of number of tracks
detected in the RPC divided by the number of extrapolated tracks identified in
CSC and DT detectors, ϵRPC = nRPC/nextrap [8]. For defining the working point
of an RPC an efficiency measurement as a function of the effictive voltage is con-
ducted. The data can be fitted with a sigmoidal function described by Eq. 9:

ε =
εmax

1 + e−slope50%(HV−HV50%)
(9)

where slope50% characterizes the steepness of the slope of the sigmoid, εmax repre-
sents the level of the plateau, and HV50% denotes the voltage at which the efficiency
reaches 50% of its maximum [8]. An example can be seen in Fig. 14.

CMS defines the working point HVWP as:

HVWP = HVknee +

{
100V barrel
120V endcap

(10)

Figure 14: A typical efficiency measurement of CMS RPC. The black dots are the
measured data points and the blue curve represents the fit to these data points.
The cross marking the ’knee’ (HVknee) shows the voltage at which the efficiency
reaches 95 % of its maximum value. This point is part of the fit parameters and
is linked to the calculation of the working point [9] (Eq. 10).
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Figure 15: A schematic view of wheel W + 2 in the barrel of CMS. Image by
CERN.

The effective voltage is defined with reference values for temperature at T0 =

293.15K and pressure at P0 = 965hPa. Changes in environmental conditions can
influence gas density and electrode resistivity. That is why a correction for both
temperature and pressure is needed. A standard practice is to maintain the factor
HV ·T

P
as constant by using the following formula:

HVapp = HVeff

(
1− α + α

P0

P

)
T

T0

, (11)

where α = 0.8 is experimentally obtained.

The barrel consists of 5 wheels, each containing 4 detector sections. Within
each section, there are 12 sectors that provide full coverage over 2π radians. RPCs
in the barrel are labeled as "RBn ± w," where n denotes the station number,
and ±w indicates the wheel number. For stations 1 and 2, there are additional
designations of "in" and "out" to differentiate the chambers within the same sector.
There are two RPC chambers positioned on either side of a DT module, with "in"
referring to the chamber that is closer to the beam pipe. Stations 3 and 4 use the
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labels "-" and "+" to distinguish the RPCs that are installed side by side along
a DT chamber (with some exceptions) where"-" indicates the chamber with the
smaller ϕ value (Fig. 15).

Figure 16: Comparison of the rate capabilities of an 8mm gas gap and a 2mm
gas gap [10].

The endcap region consists of eight disks, four on each side of the detector.
Each disk is composed of three rings, and each ring contains 36 trapezoidal RPC
detectors. The detectors are labeled "RE±n/r", where n indicates the disk num-
ber, and r represents the ring number, increasing with the distance from the pipe.
Note that the first ring has not been installed.
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Figure 17: A schematic view of disk +2 in the endcap of CMS.

3 Automation of CMS RPC HV scan data analysis

using ML

The aim of this master’s thesis was to automate the analysis of high-voltage
(HV) scan data for the RPCs in the muon system of CMS through the imple-
mentation of machine learning techniques. The HV scan is performed annually
during data collection to measure the efficiency and cluster size of the chambers
by varying the pressure-corrected voltage applied between the detector plates. The
purpose of this procedure is to define the correct working points per roll and per
channel. A roll refers to a double gap with a distinct η partition and its own read-
out electronics within an RPC. In the barrel, a single chamber can contain 2 or 3
rolls, while in the endcap there are 6 different η partitions. A typical result of such
a measurement is illustrated in Fig. 14. The relationship between efficiency and
HV demonstrates a distinct pattern characterized by a sigmoid function, which is
defined by the formula Eq. 9. Formula 10 specifies the working point per roll, and
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per channel, it is calculated as follows:

WPCH =


⟨WProll⟩ if WPMax

roll −WPMin
roll ≤ 100 V

WPMin
roll + 100 V if WPMax

roll −WPMin
roll > 100 V

(12)

3.1 Autoencoders

An autoencoder is a type of unsupervised deep learning model that serves as
a generalization of Principal Component Analysis (PCA). Its main objective is to
learn a compressed representation of the original data by transforming it into a
lower-dimensional space. This process helps to gain insights into the data.

A typical autoencoder consists of two functions, an encoder that maps the data
to the latent (bottleneck) space by a function g : Rd → Rk, where k < d, and a
decoder that maps the data from the lower-dimensional space back to the original
one, h : Rk → Rd. A one-layer neural network (NN) encoder-decoder is depicted in
Fig. 18. The d-dimensional input space is represented in a k = 3 latent space by
the encoder function g(x;W 1,W 1

0 ) = f1(W
1Tx+W 1

0 ). Here, W 1 ∈ Rd×k represents
the weights, W 1

0 ∈ Rk is the bias, and f1 denotes the activation function, which
applies nonlinearity to each dimension. To restore the representations from Rk

to Rd, a decoder defined as h(x;W 2,W 2
0 ) = f2(W

2T a + W 2
0 ) is used, where f2

serves as the activation function. The weights and biases are adjusted through
backpropagation to make the outputs x̃i similar to the inputs xi [11]. It is possible
to perfectly reconstruct the input if, for example, d = k. In this scenario, the
model does not compress the data at all. To gain valuable insights, a bottleneck
should be incorporated into the model. This constraint forces the model to learn
connections within the data, allowing for representation of the information in the
simplest way possible.
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Figure 18: An autoencoder with one layer NN in the encoder g (left) and the
decoder h (right). The input xi is represented in 3-dimensional space (a1, a2, a3),
and is then reconstructed into the original space as x̃i [11].

3.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a transformation that converts real-
valued data points into a sum of cosine functions. It is similar to another Fourier-
related technique known as the Discrete Fourier Transform (DFT). However, in-
stead of repeating the data periodically, the DCT mirrors it. This mirroring helps
eliminate sharp discontinuities, which often lead to higher frequency oscillations.
As a result, the higher frequencies in the transformed data tend to have very
small amplitudes, often around zero. This makes for a perfect technique for data
compression.

There are eight DCT variants, but only four are commonly used. Among these,
two are particularly prevalent: DCT II (Eq. 13) and DCT III (Eq. 14) [12]. DCT
II is the originally proposed variant and is often referred to simply as DCT. DCT
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III, on the other hand, is the inverse DCT.

Xk =
N−1∑
n=0

xn cos

(
π

N

(
n+

1

2

)
k

)
, k = 0, 1, 2, . . . , N − 1 (13)

Xk =
1

2
x0 +

N−1∑
n=1

xn cos

(
π

N

(
n+

1

2

)
k

)
, k = 0, 1, 2, . . . , N − 1 (14)

3.3 ML solution

Until now, parts of the HV scan were done manually, which made the procedure
time-consuming and caused delays in updating the working points of the chambers.
One full analysis took about 3 months. One possible approach to make the analysis
more efficient is to use machine learning. Various models were tested, but the best
results came from a specialized autoencoder that operates in Fourier space. A brief
description of some of the models that were tested can be found in Appendices A
and B.

The chosen architecture of the model can be seen in Fig. 19. The model
begins with an input layer that receives the measured efficiencies. The second
layer performs Discrete Cosine Transform (DCT) on the data, and then feeds
the output of this layer to the autoencoder. After processing the data through
the decoder function, an inverse DCT is applied to revert the data back to its
original space. In the end, 26 data points are produced. These 26 data points are
fitted to a sigmoidal function (Eq. 9) to obtain the parameters of the fit needed for
determining the new working points. Points of the cluster size data are excluded by
comparing the predicted and measured efficiencies with three times the measured
efficiency’s error. The reason is that if an efficiency measurement is untrustworthy,
a cluster size measurement for the same HV cannot be trusted either.

For training the model, synthetic data generated by sigmoidal functions was
used, and random uniformly distributed noise was added to 4 of the 11 points.
The generated data set consists of 100 000 data points. Training and testing were
performed using Python’s TensorFlow [13] and Keras [14] libraries. LeakyReLU
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Figure 19: Architecture of the Fourier Space Autoencoder (FSAC). The inset
images demonstrate how sample data transforms between the HV and reciprocal
space domains.

was used to introduce non-linearity into the output of the layers, or the so-called
activation function (Appendix C). The loss function was user defined and its form
can be seen in Eq. 15. In the loss function, an α is defined as a small constant that
controls the weight assigned to the mean squared error (MSE) of the derivatives
between the prediction and the original data. The optimization algorithm used
for minimizing the loss and for updating the weights was Adams (Appendix D).
Results from applying the model to the 2024 RPC HV scan data are shown in the
figures 20 to 24 .

l(wi) =
1

n

∑
(ypredwi

− yi)
2 + α

1

n

∑
(dypredwi

+ dyi)
2, (15)

FSAC’s strength lies in its ability to detect and manage anomalies in the data,
preventing outliers and incorrect data points from skewing predictive modeling.
In Fig. 20, we see an example concerning the Backward partition of the RB2in
chamber (the second barrel station, with "in" indicating the chamber closer to
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the detector’s interaction point) in sector 1 of wheel +2. Here, the data follows a
standard efficiency curve, and FSAC successfully predicts the correct efficiencies for
different effective voltages. For the data point at a voltage of 8.8 kV , the prediction
and measurement differ by more than three times the error of the measurement;
therefore, this data point is excluded from the cluster size graphic.

In Fig. 21, we observe a case where the current flowing through the chamber
was too high, resulting in the detector being switched off and measuring 0 efficiency
at a voltage of 9.8 kV . If this point were not fixed or excluded, it could skew the
data fit. As illustrated, FSAC is capable of predicting the correct efficiency even
for data points where the measured efficiency is 0.

In Fig. 22, we see how FSAC performs in the presence of multiple anomalies
in the dataset. The model effectively addresses the problem, predicting efficiencies
that are comparable to those observed in a sigmoid function.

In Fig. 23, we present a case where the plateau is missing, making it difficult
to calculate the correct working points without extrapolating the curve. In this
instance, the model outperformed other models by predicting efficiencies in ranges
even where data is missing. Finally, Fig. 24 illustrates how the model handles
both the absence of a plateau and the presence of outliers by correctly predicting
the efficiencies.
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Figure 20: FSAC analysis on a typical efficiency curve: excluded 8.8 kV data point
due to mismatch between predicted and measured efficiency value, which exceeds
the error of the measurement [15].

Figure 21: FSAC applied to a case with zero efficiency at last point: excluded 9.5
kV and 9.8 kV due to mismatch between predicted and measured efficiency values
which exceeds the error of the measurement [15].
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Figure 22: FSAC applied to a case where outliers are present in efficiency plot:
excluded 8.6, 8.8, 9, and 9.3 kV due to mismatch between predicted and measured
efficiency values which exceeds the error of the measurement [15].

Figure 23: FSAC applied to a case where there is a missing plateau in the efficiency
curve [15].

26



Figure 24: FSAC applied to a case where outliers and missing plateau are present:
excluded 8.8, 9.0, and 9.4 kV due to mismatch between predicted and measured
efficiency value which exceeds the error of the measurement [15].

3.4 Software

A dedicated software tool written in Python was developed to automate the
analysis of CMS RPC high-voltage scan data. It processes user-input data, applies
a machine learning model to generate predictions, and fits the results using a sig-
moid function. The software then extracts key parameters, calculates the optimal
working points for each roll and channel, and generates a CSV file. This file can
be directly uploaded to the detector via the DCS (Detector Control System). The
data flow can be seen in Fig. 25.

The data from the 2024 HV scan was analyzed using the software, and the
resulting output was uploaded to the detector. To accomplish this, the software
was downloaded from GitLab and executed in LXPLUS, where the necessary data
was retrieved from a dedicated EOS directory.
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Figure 25: A chart illustrating the data flow in the developed software.

The results from the 2022 HV Scan were compared between the standard pro-
cedure and the new approach. The distributions of the WP per channel for both
the standard and ML procedures can be seen in Fig. 26. In Figure 26a, it is
evident that there are fewer entries for the barrel and endcap regions compared to
Figure 26b. This difference occurs because the rolls that cannot be fitted with a
sigmoid function have been excluded from the histogram.
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(a)

(b)

Figure 26: Distributions of the working points for the two procedures: (a) shows
the results with the standard procedure, and (b) shows the results using machine
learning.
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Conclusion

The Large Hadron Collider is the largest and most powerful particle accelerator
ever built. Operating at an energy of nearly 14 TeV in the center-of-mass frame,
it smashes protons every 25 nanoseconds, resulting in thousands of newly created
particles every second. The Compact Muon Solenoid is one of four detectors
situated around the LHC, designed to explore questions within and beyond the
Standard Model of particle physics.

Muons, which are Minimum Ionizing Particles, are detected in the outermost
layers of the detector. The muon system comprises several types of gaseous detec-
tors, including Resistive Plate Chambers. For the detectors to work properly and
yield satisfactory results, they need to be calibrated by establishing the correct
working points. This calibration is achieved through a procedure known as HV
Scan.

The aim of this thesis is to automate the analysis of the HV Scan, parts of
which were previously conducted manually. The automation uses machine learning
techniques. Several ML models were tested on the data, and the FSAC model
was ultimately chosen, as it successfully addressed all challenges. Additionally, a
software application was developed using Python, allowing the entire analysis to
be executed with a single command-line input.

The output is the correct working points for each HV channel, provided in a
CSV data format that can be directly uploaded to the detector via the Detec-
tor Control System. As a result, the analysis, which originally took about three
months, can now be completed in less than a week.
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Appendix A Multi-Layered Perceptron

A Multi-Layer Perceptron (MLP) is a type of feedforward deep neural network
where data flows from the input layer to the output layer without recurrent con-
nections. It consists of at least one hidden layer with fully connected neurons,
each applying a nonlinear activation function. MLPs are used for classification
and regression tasks. During training, they compute a weighted sum of inputs,
apply activations, compute loss at the output, and update weights via backprop-
agation using different optimization techniques such as basic gradient descent or
something more sophisticated. A simple MLP can be seen in Fig. 27

Figure 27: A simple MLP with two hidden layers.

The proposed model for automating the data analysis of RPC HV scan data is
illustrated in Fig. 28. It is an MLP consisting of an input layer with 11 nodes rep-
resenting the measured efficiencies. The network has three hidden layers, followed
by an output layer with three nodes predicting the parameters of the sigmoidal
function: ϵmax, HV50%, and slope50%.
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Figure 28: The tried MLP architectecture consists of one input layer, three hiddedn
layers and one ouput layer.

While the model performed well in most cases, it occasionally predicted incor-
rect parameter values, leading to poor estimation of the working point. Another
issue is that this model cannot address the problem of missing data in the plateau
region, which is observed in some cases. Figures 29 and 30 illustrate examples of
the good and bad performance of the model, respectively.

Figure 29: An example of how MLP performs well on data and accurately predicts
the parameters, resulting in a good fit for the data points.
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Figure 30: An example where the MLP does not perform well on data showing its
inability to accurately predict the slope of the curve at HV50%, resulting in a poor
fit of the data points.

Appendix B 1D Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of feedforward artificial
neural network (ANN) typically used in supervised learning, where labeled data is
required for training. Unlike standard neural networks with fully connected layers,
CNNs use local receptive fields and shared weights, which reduces the number of
parameters. This structure results in fewer weights compared to a fully connected
neural network, helping reduce the time required for training and the memory
usage. A Convolutional Neural Network typically consists of three main types
of layers: the convolutional layer, the pooling layer, and the dense layer. The
convolutional layer contains kernels (also called filters), which are matrices for 2D
convolutions or vectors for 1D convolutions. These kernels perform a convolution
operation with the input data, sliding over the input and performing a dot product
between the kernel and local regions of the input. The values of the kernel are
learned during training and are considered the model’s parameters. The number
of kernels in a convolutional layer determines the number of output feature maps.
The kernels are used to extract specific features, such as edges or textures, from
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the input data.

The pooling layer follows the convolutional layer and serves to reduce the spa-
tial dimensions of the feature maps. It does so by applying a pooling operation,
typically max pooling or average pooling. In max pooling, the maximum value
within a defined region is taken, while in average pooling, the average value is
calculated. Pooling helps reduce computational load and prevents overfitting by
reducing the number of parameters in the network.

The dense layer is a fully connected layer that comes at the end of the net-
work, where the features extracted by the convolutional and pooling layers are
combined. In the dense layer, the features undergo a weighted sum, with each
weight learned during training. The result is then passed through an activation
function to produce the final output, such as for classification or regression tasks.

The architecture of the tested 1D CNN is shown in Fig. 31. It consists of
an input layer that takes the 11 measured efficiencies of the RPCs, followed by 6
hidden layers, with four of them being convolutional layers. The network has 11
output nodes, which classify the data as either an outlier or not.

This model classified the data well but also excluded points that were clearly
not outliers. Another issue is that it cannot address the problem of missing data
in the plateau region. Good and bad examples of the behavior of the model are
shown in Figures 32 and 33.
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Figure 31: 1D CNN architecture. It consists of 11 input nodes, 6 hidden layers,
and 11 outputs that say if the data point is and outlier or not.

Figure 32: An example of how the CNN performs on the data, accurately classi-
fying the outliers. The red crosses represent the data points identified as outliers,
while the green dots correspond to the points that passed the test. The blue curve
represents the fit of all data points, demonstrating how it is skewed due to the
presence of outliers, and the green curve shows the fit of the data points that were
not classified as anomalies by the model.
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Figure 33: An example of how the CNN performs on data that does not require
refinement. The model correctly classifies most of the data points, but fails to
classify two points as outliers. The red crosses represent the data points identified
as outliers, while the green dots correspond to the points that passed the test. The
blue curve shows the fit of all data points, and the green curve represents the fit
of the data points that were not classified as anomalies by the model. Although
the fit remains good even after removing the two incorrectly classified data points,
incorrect classification is undesirable.

Appendix C LeakyReLU

Leaky Rectified Linear Unit, or Leaky ReLU, is one of the most commonly
used activation functions in machine learning models.It is called "leaky" because
unlike the basic ReLU function that leads to inactive neurons for negative inputs,
Leaky ReLU introduces non-zero gradient for negative input values. This non-
zero gradient prevents the ’dying ReLU problem’ by preserving some activity in
the neurons. The function is defined as:

Leaky ReLU(x) =

x if x > 0

αx if x ≤ 0
(16)
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Figure 34: ReLU activation function vs Leaky ReLU activation function. The
small slope introduced for negative inputs in Leaky ReLU keeps the neurons active,
meaning they can still learn [16].

where α is a small positive constant that defines the slope of the negative part of
the function. Comparison between basic ReLU and LeakyReLU can be seen in
Fig. 34.

Appendix D Adams optimizer

Adams is an optimization method that integrates two extensions of stochastic
gradient descent (SGD): the Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp). The key innovation of these extensions is
the use of different learning rates for each weight (or parameter), in contrast to
traditional SGD, which applies the same learning rate for all weights throughout
the entire training process [17]. The issue with Stochastic Gradient Descent (SGD)
is that, while it converges to the minimum faster than standard gradient descent,
it can be highly sensitive to the initial weight values. This sensitivity may cause
SGD to become trapped in a local minimum, preventing it from reaching the global
minimum [17].

AdaGrad addresses this by adjusting the learning rates based on the accumu-
lation of past squared gradients. This means that if the gradients for a particular
weight are consistently large over several steps, the learning rate for that weight
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will decrease rapidly. The update rule for the AdaGrad algorithm is as follows:

wi(t) = wi(t− 1)− η√
Gi + ϵ

· ∇wi
J(w) , (17)

where Gi =
∑T

t=1 (∇wi
J(w))2 is the sum of the gradients of the loss function in

relation to the weight wi over all previous steps. In some instances, the algorithm
can reduce the learning rate excessively, causing the learning process to become
very slow.

RMSProp uses a different method to adjust the learning rate by relying on
the moving average of squared gradients. This approach addresses the issue of
the learning rate decreasing too rapidly, as seen in AdaGrad. The algorithm is
described by the following equations:

Ei(t) = βEi(t− 1) + (1− β)(∇wi
J(wi))

2 (18)

where Ei(t) is the moving average of the squared gradients for parameter wi, β is
the decay factor (typically β = 0.9), ∇wi

J(w) is the gradient of the loss function
J(w) with respect to parameter wi at iteration t.

The weights are updated by scaling the gradient by the inverse of the square
root of the moving average Ei(t) (with a small constant ϵ to prevent division by
zero). The update rule is given by:

wi(t) = wi(t− 1)− η√
Ei(t) + ϵ

∇wi
J(w) (19)

where wi(t) is the updated parameter at iteration t, η is the learning rate, ϵ is a
small constant (typically 10−8) to avoid division by zero.

Adams combines the advantages of both the AdaGrad and RMSProp. It com-
putes two ’moments’: the exponential moving average of the gradient and the
squared gradient of the weights. By providing additional information about past
weight updates and the direction of the gradient, the optimization process im-
proves due to better control over the algorithm’s functioning. Adams is described
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by the following equations:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t

(20)

where mt and vt are the moving average of the gradient (fist moment or also referred
to as ’mean’ of the gradients) and the moving average of the squared gradients
(second moment or also referred also as ’variance’ of the gradients). Since mt and
vt are initialized as vectors of zeros, they tend to be biased towards zero during the
initial steps, especially when the gradients are small (due to β1 and β2 being close
to 1). This is why a bias correction is necessary. The bias correction is performed
using the following equations:

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(21)

Keeping this in mind, the rule for updating the weights is as follows:

wt+1 = wt −
n

√
vt + ϵ

mt, (22)

Comparision between different algorithms for minimizing the function f(x1, x2) =

1.3x2
1 + 2x2

2 can be seen in Fig.35.
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Figure 35: The top plot compares the performance of SGD, AdaGrad, and RM-
SProp, each using 30 iterations for updating x1 and x2. RMSProp converges the
fastest and successfully reaches the minimum. While SGD outperforms AdaGrad
in terms of speed in this instance, both AdaGrad and RMSProp exhibit smoother
convergence. The bottom plot compares SGD and Adam, also with 30 iterations
for updating x1 and x2. Adam demonstrates smoother convergence and success-
fully finds the minimum, whereas SGD does not reach it. All algorithms utilize a
learning rate of 0.42.
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