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Abstract

This thesis focuses on the aerodynamic flow around airfoils using the Joukowski trans-

formation, a complex-variable conformal mapping technique that transforms a circle into

a symmetric or cambered airfoil shape. By analyzing potential flow around a circle and

applying the Joukowski map, the behavior of ideal, inviscid flow around an airfoil can

be studied analytically. This approach provides insight into fundamental aerodynamic

quantities such as lift and pressure distribution and serves as a classical foundation for

more advanced computational and experimental methods.
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Chapter 1

Introduction

1.1 Overview of fluid mechanics

Fluid mechanics is a core area of classical physics that examines the behavior of fluids – liquids

and gases – and the forces they exert on immersed objects. It offers the theoretical foundation

for understanding fluid motion and interactions with solid surfaces, underpinning applications in

aerodynamics, meteorology, oceanography, astrophysics, and numerous other disciplines.

The subject is broadly divided into fluid statics, which deals with fluids at rest, and fluid dynamics,

which focuses on fluids in motion. Central to fluid mechanics is the continuum assumption, treating

fluids as continuous media, which enables the use of differential equations to model their behavior.

This leads to set of practically important equations such as the Navier1-Stokes2 equations, which

describe the motion of viscous3, Newtonian fluids4 under conservation of mass and momentum.

Key concepts include pressure, viscosity, flow regimes (laminar vs. turbulent), and the Reynolds

number, which characterizes the relative importance of inertial and viscous effects. These principles

1Claude-Louis Navier (1785–1836) was a French engineer and physicist who contributed to elasticity theory and
fluid mechanics. He introduced molecular considerations into continuum mechanics and formulated the first version
of the equations governing viscous fluid flow, which now bear his name.

2George Gabriel Stokes (1819–1903) was an Irish mathematician and physicist who extended Navier’s work on
fluid motion. He established the modern form of the Navier–Stokes equations and made fundamental contributions to
hydrodynamics, optics, and mathematical physics.

3A viscous fluid is a fluid that resists motion due to internal friction between its layers. This resistance is quantified
by a property called viscosity, which measures how easily a fluid flows.

4Newtonian fluids are fluids whose viscosity remains constant regardless of the applied shear stress or shear rate.
In other words, the relationship between shear stress and the rate of strain (deformation) is linear, and the fluid flows
consistently under force. Water is an example of such a fluid.
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1.2 Aerodynamics as part of fluid mechanics

support both theoretical and computational approaches in analyzing complex flow phenomena.

1.2 Aerodynamics as part of fluid mechanics

A major subfield of fluid mechanics is aerodynamics1, which studies the gases in motion and their

interaction with solid bodies, particularly in the context of lift, drag, and flow separation. Aerody-

namics plays a central role in the design and analysis of aircraft wings (airfoils), wind turbines, and

high-speed vehicles.

To determine the aerodynamic forces acting on an airplane or its components, it is necessary

to solve the equations that govern the airflow around the vehicle. These airflow solutions can be

formulated from the perspective of a ground-based observer or from the viewpoint of the pilot. As

dictated by the laws of physics, both observers must arrive at equivalent results.

To a ground-based observer, the airplane is flying through a mass of air that is essentially at

rest (assuming no wind). As the airplane moves, it accelerates and decelerates the surrounding

air particles. The reaction of these particles to the imposed acceleration generates a force on the

airplane. In this case, the flow field description in the ground-based frame of reference is time-

dependent, representing an unsteady flow.

In the reference frame of the pilot, the airflow moves relative to the aircraft and adjusts according

to the vehicle’s geometry. If the aircraft maintains constant altitude and velocity, the velocity and

thermodynamic properties of the airflow at any fixed point relative to the aircraft remain invariant

with time. Consequently, the governing equations are typically more tractable when formulated in

the vehicle-fixed (or pilot-fixed) reference frame, rather than in the ground-based coordinate system.

Thus, many aerodynamic problems are formulated by modeling the flow of a fluid stream past a

stationary body, where the frames of reference corresponding to the ground-based observer and the

vehicle-fixed observer are related through a Galilean transformation2.

Due to the often complex nature of flow patterns, a comprehensive description of the result-

ing flow frequently requires a combination of experimental investigations, theoretical analyses, and

computational simulations.

1Its liquid fluid counterpart is called hydrodynamics.
2Galilean transformations are the change of coordinates between two inertial reference frames moving at constant

relative velocity v in classical (non-relativistic) mechanics. For motion along x-axis: x′ = x− vt, y′ = y, z′ = z.
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1.3 Structure of the thesis

1.3 Structure of the thesis

This thesis focuses on the aerodynamic flow around airfoils using the Joukowski1 transformation, a

complex-variable conformal mapping technique that transforms a circle into a symmetric or cambered

airfoil shape. By analyzing potential flow around a circle and applying the Joukowski map, the

behavior of ideal, inviscid flow around an airfoil can be studied analytically. This approach provides

insight into fundamental aerodynamic quantities such as lift and pressure distribution and serves as

a classical foundation for more advanced computational and experimental methods.

The structure of the thesis is organized as follows:

Chapter 2: We introduce the fundamental equations of fluid mechanics, derived from three basic

physical principles: conservation of mass (continuity equation), conservation of energy (the first law

of thermodynamics), and conservation of linear momentum (Newton’s second law). This system

is further complemented by the equation of state and the second law of thermodynamics for non-

equilibrium conditions. We also derive both the integral and local differential forms of the governing

equations under the simplifying assumptions of steady, incompressible flow with constant density ρ

and no external body forces (f⃗ = 0).

Chapter 3: We examine the two-dimensional, ideal, steady, uniform flow past a circular cylinder

of radius R in the classical Kutta–Joukowski framework. Key flow quantities are derived, including

the velocity potential, stream function, pressure distribution, and the resulting lift and drag forces.

Chapter 4: We extend the analysis to the two-dimensional Joukowski airfoil theory using complex

variables. In this framework, we describe potential (irrotational and incompressible) flow around a

circle displaced from the origin in the complex plane. By applying the Joukowski transformation – a

conformal mapping that converts a circle into a symmetric or cambered airfoil shape – we analytically

investigate the behavior of ideal, inviscid flow around an airfoil.

Chapter 5: We provide an effective description and analysis of a general airfoil-shaped wing. To

illustrate the practical relevance of the theory, we present simulated velocity and pressure distribu-

tions around a real Boeing 737-800 wing, which support and validate the theoretical results obtained

1Nikolai Yegorovich Zhukovsky (1847–1921), often transliterated as Joukowski, was a Russian scientist regarded as
the founder of Russian aerodynamics. He independently derived the lift theorem and pioneered the use of conformal
mapping to transform circles into airfoil shapes, laying the foundation for modern airfoil theory. His institute in
Moscow later became central to the development of Soviet aeronautics.
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1.3 Structure of the thesis

in the earlier chapters regarding lift generation.

Chapter 6: We conclude the thesis by summarizing the main findings and their implications and

present some future prospects.

4



Chapter 2

Fundamentals of Fluid Mechanics

Chapter Objectives: This chapter focuses on deriving the key equations of fluid dynamics and

developing a clear understanding of the underlying physical laws. We will use the following standard

references on the subject [1–8].

2.1 Basic equations of fluid mechanics

The fluid motion is generally determined by three fundamental physical laws:

1. Conservation of mass, expressed by the continuity equation.

2. Conservation of linear momentum (Navier-Stokes equations), based on Newton’s1 second

law of motion.

3. Conservation of energy, as stated in the first law of thermodynamics.

The basic equations stemming from these laws of fluid mechanics describe how fluids move and

how forces act on them. The most commonly used equations are:

1. Continuity equation (conservation of mass). If ρ is the fluid mass density and u⃗ is the

1Isaac Newton (1642–1727) was an English mathematician, physicist, and natural philosopher whose Principia
Mathematica laid the foundations of classical mechanics. In fluid mechanics, he introduced the concept of a linear
relationship between shear stress and velocity gradient, defining what is now called a Newtonian fluid.
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2.1 Basic equations of fluid mechanics

velocity vector1, then the continuity equation ensures that mass is conserved within a fluid

flow. There are two general cases:

• For incompressible flow 2 (∂tρ = 0):

∇ · u⃗ = 0, ∇iu
i = 0. (2.1)

• For compressible flow 3:

∂ρ

∂t
+∇ · (ρu⃗) = 0, ∂tρ+∇i(ρu

i) = 0, (2.2)

where ∇i is the covariant derivative4 (accounts for curvature) with respect to a metric tensor5

gij and an affine connection6 (Christoffel symbols) Γj
ik, i.e.

∇iu
j = ∂iu

j + Γj
iku

k, Γj
ik =

1

2
gjl(∂iglk + ∂kgli − ∂lgik). (2.3)

2. Navier-Stokes equations (conservation of momentum):

ρ

(
∂u⃗

∂t
+ u⃗ · ∇u⃗

)
= −∇p+∇ · τ̂ + ρf⃗ , (2.4)

ρ
(
∂tu

i + uj∇ju
i
)
= −∇ip+∇jτ

ij + ρf i, (2.5)

1For the components of the local velocity we will use the following notations: u⃗ = (u, v, w)T . Obviously the
velocity and its components dependent on the point in space and time u⃗ = u⃗(x⃗, t), i.e. it is a local vector field.
Another example is the mass density ρ = ρ(x⃗, t), which is a scalar vector field.

2Incompressible flow refers to the assumption that a fluid’s density remains constant during motion, so that the
continuity equation reduces to ∇ · u⃗ = 0. This is exact for liquids and a good approximation for gases at low Mach
numbers (M ≲ 0.3), where density variations are negligible.

3Compressible flow refers to fluid motion in which density variations are significant and cannot be neglected. It is
common in gases at high speeds or under strong pressure/temperature changes, where the full continuity and energy
equations must be used.

4Covariant derivative is a generalization of the usual derivative to curved spaces, allowing the differentiation of
vectors and tensors in a way that respects the geometry. It accounts for changes in both the components and the
basis, and is fundamental in differential geometry and general relativity.

5Metric tensor is a fundamental object in differential geometry that defines distances and angles on a manifold.
It allows one to compute lengths of curves, angles between vectors, and volumes, and underlies the formulation of
general relativity.

6Affine connection is a geometric object that defines how vectors are transported and differentiated along curves
on a manifold. It specifies the rules for parallel transport and determines the covariant derivative, playing a central
role in differential geometry and general relativity.
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2.1 Basic equations of fluid mechanics

where p is pressure, f⃗ is body force per unit mass (e.g., gravity, electromagnetic force etc.),

and τ̂ is the viscous stress tensor1:

τ ij = µ
(
∇iuj +∇jui − 2

3
gij∇ku

k
)
+ ζgij∇ku

k, (2.6)

with the dynamic viscosity µ and the bulk viscosity2 ζ. Equations (2.4) and (2.5) are a fluid

version of Newton’s second law of motion3.

3. Conservation of energy (the first law of thermodynamics): for compressible flows one has:

ρ

(
∂ε

∂t
+ u⃗ · ∇ε

)
= −p(∇ · u⃗) + Φ +∇ · (κ∇T ) + ρq̇, (2.7)

ρ
(
∂tε+ uj∇jε

)
= −p∇ju

j + Φ+∇i(κ∇iT ) + ρq̇, (2.8)

where ε is the internal energy per unit mass, T is temperature, κ is thermal conductivity4,

Φ = τ̂ : ∇u⃗ = τ ij∇iuj represents viscous dissipation function5, and q̇ is the heat-generation

1Viscous stress tensor τ̂ is a second-order tensor that describes the internal frictional forces in a fluid arising from
gradients in the velocity field. Its components τ ij quantify how shear and normal stresses develop in response to
the rate of deformation, allowing viscous effects to be included in the momentum balance, as in the Navier–Stokes
equations. For a Newtonian fluid, it is proportional to the strain rate tensor Ŝ, with the proportionality given by the
fluid’s viscosity µ as in Eq. (2.35).

2Dynamic viscosity µ and bulk viscosity ζ are both measures of a fluid’s resistance to flow, but they describe
resistance to different types of deformation. Dynamic viscosity (resistance to shear deformation) µ, often simply called
viscosity or shear viscosity, quantifies a fluid’s resistance to shearing forces. Shear occurs when adjacent layers of a
fluid move relative to each other, like when you spread honey with a knife, or when fluid flows through a pipe, with
layers near the center moving faster than those near the walls. Bulk viscosity ζ (resistance to volume change, e.g.
compression or expansion), also known as volume viscosity or second viscosity, quantifies a fluid’s resistance to uniform
compression or expansion (dilation). It describes the irreversible loss of mechanical energy when the fluid’s volume
changes.

3Newton’s second law states that the net force acting on a body is equal to the rate of change of its linear
momentum, F⃗ = dp⃗

dt (= ma⃗ for constant mass). It provides the fundamental relationship between forces and motion,
forming the basis of classical mechanics and governing both particle dynamics and continuum systems, including fluids
and solids.

4Thermal conductivity is a physical property of a material that measures its ability to transfer heat through
conduction. It defines the proportionality between the heat flux q⃗ and the temperature gradient ∇T via Fourier’s law,
q⃗ = −κ∇T , where κ is the thermal conductivity. High values of κ correspond to materials that efficiently conduct
heat, such as metals, while low values correspond to insulators.

5Viscous dissipation function Φ is a scalar quantity that measures the rate at which the mechanical energy of
a fluid is irreversibly converted into thermal energy due to viscous stresses. It depends on the velocity gradient
tensor ∇u⃗ and the viscous stress tensor τ̂ , capturing the work done by internal friction during shear and volumetric
deformations. The viscious dissipation function Φ appears explicitly in the energy equation (2.7) of viscous flows,
influencing temperature rise in high-viscosity fluids, boundary layers, and regions of strong shear, and plays a crucial
role in thermofluid analyses where viscous heating is non-negligible.
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2.1 Basic equations of fluid mechanics

rate per unit mass (W/kg) accounting for external or internal heat sources (e.g., radiation,

chemical reactions etc.) This equation represents the work done by pressure, heat conduction,

and viscous effects.

4. Equation of state (thermodynamic relation): An equation of state (EoS) is a thermodynamic

equation that relates several state variables (or thermodynamic variables) that describe the

state of matter under a given set of physical conditions. Essentially, it’s a mathematical model

that links fundamental properties of a substance, such as: pressure p, volume V , temperature

T , number of moles n etc. The general form of a thermal equation of state is often written as:

f(p, V, T, n, ...) = 0, (2.9)

e.g. for an ideal gas one has p = ρRT , where R is the universal gas constant.

5. Entropy inequality (the second law of thermodynamics):

ρ

(
∂s

∂t
+ u⃗ · ∇s

)
≥ 1

T

(
Φ +

k(∇T )2

T

)
, (2.10)

ρ
(
∂ts+ uj∇js

)
≥ 1

T

(
Φ +

k(∇iT )
2

T

)
, (2.11)

where s is the specific entropy per unit mass. It expresses that entropy production is non-

negative. The inequality describes real (irreversible) processes, while equality can be realized

in ideal flows (perfect fluid, reversible adiabatic motion etc.).

The set of equations above form the foundation for both theoretical analysis and computational fluid

dynamics (CFD). Depending on the problem (e.g., incompressible vs. compressible, laminar1 vs.

turbulent2), simplifications may be applied.

1Laminar flow is a flow regime in which fluid moves in smooth, orderly layers with minimal mixing between them.
Velocity at each point remains steady in time, and the motion is dominated by viscous forces rather than inertia,
typically occurring at low Reynolds numbers.

2Turbulent flow is a chaotic flow regime characterized by irregular fluctuations in velocity and pressure, strong
mixing, and the dominance of inertial forces over viscous forces. It typically occurs at high Reynolds numbers.

8



2.2 The importance of the Navier-Stokes equations

2.2 The importance of the Navier-Stokes equations

The set of fluid mechanics equations (2.1)-(2.7) are partial differential equations that describe the

motion of viscous fluids. Named after Claude-Louis Navier and George Gabriel Stokes, they were

developed between 1822 and 1850 through gradual theoretical advances.

These equations express momentum conservation in Newtonian fluids and incorporate mass con-

servation. They derive from Newton’s second law, assuming fluid stress combines a pressure term

and a viscous term proportional to velocity gradients – capturing the behavior of viscous flow. Unlike

the Euler1 equations (A.2), which model inviscid flow, the Navier-Stokes equations include viscosity,

making them elliptic2 and more analytically tractable, though less mathematically structured.

Widely applied in science and engineering, the Navier-Stokes equations model weather patterns,

ocean currents, pipe flow, and aerodynamics. They support the design of vehicles, power systems,

and medical devices, and are crucial in fields like pollution analysis and magnetohydrodynamics when

paired with Maxwell’s equations.

Mathematically, they pose a major unsolved problem: whether smooth, bounded solutions exist

in three dimensions. This “Navier-Stokes existence and smoothness” problem is one of the Clay

Mathematics Institute’s seven Millennium Prize Problems, with a $1 million reward for a solution or

counterexample3.

In what follows we will derive equations (2.2), (2.4) and (2.7), where, for clarity, certain simplifying

assumptions will also be used.

1Leonhard Euler (1707–1783) was a Swiss mathematician and physicist who made foundational contributions to
fluid mechanics, among many other fields. He formulated the Euler equations (A.2), which describe the motion of an
ideal, inviscid fluid, laying the groundwork for modern theoretical hydrodynamics.

2Elliptic PDEs are a class of partial differential equations that model steady-state or equilibrium situations where
the solution is influenced by conditions throughout the domain. They are characterized by the absence of real charac-
teristic lines and typically yield smooth solutions. In fluid mechanics, elliptic PDEs arise in incompressible, irrotational
flows, where the velocity potential satisfies Laplace’s equation. Their solutions depend strongly on boundary condi-
tions, reflecting the global influence of the domain.

3Navier–Stokes Millennium Problem: The Clay Mathematics Institute has listed the Navier–Stokes equations as
one of its seven Millennium Prize Problems. The challenge is to prove or disprove whether smooth, globally defined
solutions always exist in three dimensions for incompressible flows, or whether singularities (blow-ups) can develop in
finite time. Solving this problem carries a one-million-dollar prize and remains a central open question in mathematical
fluid mechanics.

9



2.3 Continuity equation and conservation of mass

2.3 Continuity equation and conservation of mass

Let us consider a small, two-dimensional rectangle in the xy-plane through which a fluid flows. The

rectangle’s faces are imaginary and do not impede the flow. Let u and v denote the components

of the fluid velocity in the x- and y-directions, respectively. According to the principle of mass

conservation, the net mass outflow through the surface enclosing the rectangle must equal the rate

of decrease of mass within the volume.

x

y

(x, y) (x+∆x, y)

(x+∆x, y +∆y)(x, y +∆y)

n⃗x = (−1, 0)T n⃗x+∆x = (1, 0)T

n⃗y = (0,−1)T

n⃗y+∆y = (0, 1)T

in
u⃗x

out

u⃗x+∆x

in

u⃗y

out

u⃗y+∆y

∆y

∆x

Figure 2.1 Control volume (CV) with outward normals (red) and velocity field (blue). Velocity
vector indicate the mass inflow/outflow. For simplicity, the velocity vectors in the figure are drawn
normal to each face, but in general, their direction is arbitrary; thus, at each face the velocity
retains both components, u⃗ = (u, v)T . However, when computing the mass flux through a given
face—e.g., the left face—only the velocity component normal to that face (here, u) contributes, since
the tangential component (v) does not affect the flux.

To determine the mass flow rate ṁ = dm
dt

through the surface of the rectangle, we analyze the

fluid flow across each face of the rectangle. The rectangular CV in Fig. 2.1 consists of four faces:

• Inlet (left face) at x, there ia a normal outward vector n⃗x = (−1, 0)T , and an inward velocity

u⃗x = (ux, vx)
T =

(
u(x, y), v(x, yface)

)T
. Note that the vertical component vx = v(x, yface) is tangential

to the face and does not contribute, thus only the horizontal flux ux = u(x, y) matters.

• Outlet (right face) at x+∆x, there is a normal outward vector n⃗x+∆x = (1, 0)T , and an outward

velocity u⃗x+∆x = (ux+∆x, vx+∆x)
T =

(
u(x+∆x, y), v(x+∆x, yface)

)T
.
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2.3 Continuity equation and conservation of mass

• Bottom face at y, there is a normal outward vector n⃗y = (0,−1)T , and an inward velocity

u⃗y = (uy, vy)
T =

(
u(xface, y), v(x, y)

)T
.

• Top face at y+∆y, there is a normal outward vector n⃗y+∆y = (0, 1)T , and an outward velocity

u⃗y+∆y = (uy+∆y, vy+∆y)
T =

(
u(xface, y +∆y), v(x, y +∆y)

)T
.

The mass flow rate ṁ is given by the product of density ρ, velocity (u or v), and the cross-sectional

area (∆x or ∆y) through which the fluid flows:

ṁ = ρ× velocity× cross-sectional area. (2.12)

Let us first write this quantity in the x-direction (left and right faces). Through the left face we have

an inflow at x:

ṁx,in = ρ(x, y)u(x, y)∆y = ρu∆y. (2.13)

The outflow through the right face at (x+∆x) is:

ṁx,out = ρ(x+∆x, y)u(x+∆x, y)∆y =

(
ρu+

∂(ρu)

∂x
∆x+ O(∆x2)

)
∆y, (2.14)

where we used a Taylor expansion for small ∆x up to first power. The net flow in x-direction is then

given by:

∆ṁx = ṁx,in − ṁx,out = ρu∆y −
(
ρu+

∂(ρu)

∂x
∆x+ O(∆x2)

)
∆y ≈ −∂(ρu)

∂x
∆x∆y. (2.15)

The flow in the y-direction passes through the bottom and the top faces. The inflow through the

bottom face at y is:

ṁy,in = ρ(x, y) v(x, y)∆x = ρv∆x. (2.16)

The outflow through the top face at y +∆y is given by:

ṁy,out = ρ(x, y +∆y) v(x, y +∆y)∆x =

(
ρv +

∂(ρv)

∂y
∆y + O(∆y2)

)
∆x, (2.17)
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2.4 Reynolds Transport Theorem (RTT)

where we used a Taylor expansion for small ∆y up to first power. The net flow in y-direction is thus:

∆ṁy = ṁy,in − ṁy,out = ρv∆x−
(
ρv +

∂(ρv)

∂y
∆y + O(∆y2)

)
∆x ≈ −∂(ρv)

∂y
∆x∆y. (2.18)

Finally, the total mass flow rate from both directions yields:

ṁtotal = ∆ṁx +∆ṁy = −
(
∂(ρu)

∂x
+
∂(ρv)

∂y

)
∆x∆y = −div(ρu⃗)∆x∆y, (2.19)

where u⃗ = (u, v) is the velocity vector field of the fluid. The formula above represents the divergence

of the mass flux ρu⃗. If div(ρu⃗) > 0, there is a net outflow (mass leaving the rectangle). If div(ρu⃗) < 0,

there is a net inflow (mass entering the rectangle). For the mass to be conserved (no accumulation

in the rectangle), the net mass flow rate must be zero:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 or ∂tρ+ div(ρv⃗) = 0, (2.20)

where we also included the flow in the z-direction. This is the mass continuity equation, where ∂tρ

accounts for any time-dependent changes in density and u⃗ = (u, v, w) is the velocity vector in three

dimensions. In steady flow, ∂tρ = 0, and Eq. (2.20) simplifies to:

div(ρu⃗) = 0. (2.21)

Insisting further on incompressible flow ρ = const, one has ∇ · u⃗ = 0.

The next step towards deriving the full set of equations in fluid mechanics is the Reynolds

Transport Theorem (RTT).

2.4 Reynolds Transport Theorem (RTT)

The Reynolds Transport Theorem provides a crucial link between the analysis of a system of fixed

mass (a Lagrangian approach) and a fixed region in space, known as a control volume (an Eulerian

approach). It is a fundamental principle in fluid mechanics used to derive the conservation laws for

mass, momentum, and energy for a control volume.

12



2.4 Reynolds Transport Theorem (RTT)

2.4.1 Derivation of RTT

We will derive the RTT for a fixed control volume:

Φ̇ =
dΦsys

dt
=

∫
CV

∂ϕ

∂t
dV +

∫
CS

(u⃗ · n⃗)ϕ dA. (2.22)

This theorem states that the rate of change Φ̇ of an extensive property Φ for a system is equal to

the rate of change ∂tϕ of its density ϕ within the control volume plus the net flux of that property

out of the control surface. Before we prove this theorem, let’s define our key terms:

• System: A specific quantity of mass that is followed as it moves and deforms. The mass within

a system is constant.

• Control volume (CV): A fixed region in space through which the fluid flows. Its shape and

size do not change with time.

• Control surface (CS): The boundary surface of the control volume.

• Intensive property ϕ(x⃗, t): Property of the fluid per unit volume, mass or charge.

• Extensive property (global charge) Φ(t): The total amount of the scalar property within

a given volume, calculated by integrating the intensive property ϕ over that volume.

Our goal is to relate the rate of change Φ̇ of an extensive property Φ for a system to the changes

occurring within a fixed control volume. For this purpose, let’s consider a system that, at time t,

exactly coincides with our fixed control volume. The total amount of the property Φsys in the system

at time t is the same as that in the control volume at that instant:

Φsys(t) = ΦCV(t) =

∫
CV

ϕ(x⃗, t) dV. (2.23)

At a later time, t+∆t, the system has moved. It now occupies a new region, which can be described

as the original control volume minus the part the system has left (region I) and plus the new region

it has entered (region II). The amount of the property Φ in the system at time t+∆t is:

Φsys(t+∆t) = ΦCV(t+∆t)− ΦI(t+∆t) + ΦII(t+∆t). (2.24)
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2.4 Reynolds Transport Theorem (RTT)

The rate of change Φ̇sys of the extensive property Φsys for the system is given by the definition of the

derivative:
dΦsys

dt
= lim

∆t→0

Φsys(t+∆t)− Φsys(t)

∆t
. (2.25)

Substituting our expression (2.24) from the previous step, we find:

dΦsys

dt
= lim

∆t→0

[
ΦCV(t+∆t)− ΦI(t+∆t) + ΦII(t+∆t)

]
− ΦCV(t)

∆t

= lim
∆t→0

ΦCV(t+∆t)− ΦCV(t)

∆t
+ lim

∆t→0

ΦII(t+∆t)− ΦI(t+∆t)

∆t
. (2.26)

The first term on the right-hand side is the definition of the time derivative of the extensive property

Φ within the control volume. Since the control volume is fixed, the derivative can be moved inside

the integral of its density representation:

lim
∆t→0

ΦCV(t+∆t)− ΦCV(t)

∆t
=
dΦCV

dt
=

d

dt

∫
CV

ϕ(x⃗, t) dV =

∫
CV

∂ϕ

∂t
dV. (2.27)

The second limit term in (2.26) represents the net rate of flow, or flux, of the property Φ out of

the control volume. In order to understand it let u⃗ be the velocity vector of the fluid and n⃗ be the

outward-pointing normal vector to the control surface element dA. The amount of the property Φ

crossing an area dA in time ∆t is ϕ(u⃗ · n⃗)∆t dA. The net rate of outflow across the entire control

surface is the integral over the control surface:

lim
∆t→0

ΦII(t+∆t)− ΦI(t+∆t)

∆t
=

∫
CS

ϕ(u⃗ · n⃗) dA. (2.28)

Finally, inserting the expressions from (2.27) and (2.28) back into (2.26), one arrives at theReynolds

Transport Theorem for a fixed control volume:

dΦsys

dt
=

∫
CV

∂ϕ

∂t
dV +

∫
CS

ϕ(u⃗ · n⃗) dA. (2.29)
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2.4 Reynolds Transport Theorem (RTT)

2.4.2 RTT for momentum

We consider a steady, incompressible, two-dimensional flow through a rectangular control volume

(CV) of dimensions ∆x∆y (Fig. 2.1). The goal is to derive the linear momentum equation in the x-

and y-directions. For this purpose, our starting point will be the Reynolds Transport Theorem

(RTT) (2.29) applied to the momentum P⃗ . In this case, it relates the rate of change
˙⃗
P of momentum

P⃗ in a CV to the momentum flux across its control surfaces (CS). For a fixed CV, the change
˙⃗
P in

linear momentum P⃗ equals the sum of all forces F⃗total acting on the fluid element:

I⃗ ≡ F⃗total =
dP⃗

dt
=

∂

∂t

∫
CV

ρu⃗ dV +

∮
CS

ρu⃗(u⃗ · n⃗) dS. (2.30)

Note that ρu⃗ is a momentum per unit volume (momentum density), which integrated over dV gives

momentum (i.e ρu⃗ is the ϕ in RTT). For steady flow, all partial derivatives along the time ∂t, are 0,

thus:

I⃗ =

∮
CS

ρu⃗(u⃗.n⃗) dS = F⃗body + F⃗surface, (2.31)

where F⃗body is the external force acting on the body (e.g. gravity), and F⃗surface is the force on the

surfaces (pressure plus viscous (shear) stresses):

F⃗body =

∫
CV

ρf⃗ dV, F⃗surface =

∮
CS

T⃗ dS. (2.32)

Here the vector T⃗ is the stress vector (traction), which represents the surface force per unit area

exerted on the control surface by the surrounding fluid, and is related to the Cauchy stress tensor σ̂

through:

T⃗ = σ̂ · n⃗ = −p n⃗+ τ̂ · n⃗. (2.33)

where n⃗ is the outward-pointing unit normal vector to the surface element dS. The stress tensor σ̂

contains both pressure contribution (−pÎ), and viscous (shear) stresses (τ̂):

σ̂ = −pÎ + τ̂ . (2.34)
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2.4 Reynolds Transport Theorem (RTT)

The vector T⃗ points in the direction of the fluid, i.e. it is pushing or pulling on the surface element.

If T⃗ has a tangential component, it will try to slide the surface element along the surface (shear). If

it has a normal component, it will push or pull perpendicular to the surface (pressure).

Shear stresses τ̂ are the tangential components of stress – forces per unit area (N/m2) that act

parallel to a material’s surface, rather than perpendicular to it. For a Newtonian fluids1, the viscous

stress tensor are defined by the Newton law of viscosity:

τ̂ = 2µŜ = µ
[
∇u⃗+ (∇u⃗)T

]
, τ ij = µ

(
∇iuj +∇jui

)
, (2.35)

where Ŝ represents the symmetric (strain) part of the velocity gradient tensor decomposition into

symmetric and antisymmetric part:

∇u⃗ =
1

2

[
∇u⃗+ (∇u⃗)T

]
+

1

2

[
∇u⃗− (∇u⃗)T

]
= Ŝ + Ω̂. (2.36)

Since for Newtonian fluids the rotational part Ω̂ is zero, then for instance, in 2d we can write:

τ̂ =

τxx τxy

τxy τyy

 = µ

 2
∂u

∂x

∂u

∂y
+
∂v

∂x
∂u

∂y
+
∂v

∂x
2
∂v

∂y

 . (2.37)

A more general expression for τ̂ is presented in Eq. (2.6), where contributions also from dilatations

(stretching of the control volume) and curvature are included.

1Newtonian fluid is a fluid whose viscosity (resistance to flow) remains constant regardless of the rate at which
it is deformed (shear rate). A classic example of a Newtonian fluid is water. If you pour water from a cup slowly or
quickly, it flows with the same viscosity. In lab tests, the shear stress vs. shear rate graph for water is a straight line
through the origin, meaning its viscosity is constant at around µ ≈ 10−3 Pa · s. Non-Newtonian fluids, in contrast,
have viscosities that change depending on the shear rate (e.g., ketchup, oobleck, toothpaste).
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Figure 2.2 (a) Stress tensor (3d). (b) Stress tensor (2d).

2.5 Conservation of linear momentum

We will now apply RTT to the rectangular CV shown in Fig. 2.1. Assume the velocity components

are u⃗ = (u, v)T , the flow is incompressible with constant density ρ, and there are no body forces

(f⃗ = 0) for simplicity. The momentum flux term (2.31) is evaluated on each face:

• Inlet (left face) at x with normal vector n⃗x = (−1, 0)T and components of the velocity u⃗x =

(u, v)Tx . The mass flux per unit area is given by: ρu⃗x(u⃗ · n⃗)x = ρ(−ux)u⃗x = ρ(−u u⃗)x. Therefore, the

momentum flux (2.31) is (ρ = const):

I⃗left ≡ I⃗x =

∫ y+∆y

y

ρ(−u u⃗)x dy = −ρ
∫ y+∆y

y

u2

uv


x

dy ≈ −ρ

u2

uv


x

∆y. (2.38)

Here, for small ∆y we approximated the integral over the x face using the Euler forward (left
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2.5 Conservation of linear momentum

endpoint) average1: ∫ y+∆y

y

f(y)dy ≈ f(y)∆y. (2.39)

• Outlet (right face, x+∆x) with normal vector n⃗x+∆x = (1, 0)T and components of the velocity

u⃗x+∆x = (ux+∆x, vx+∆x)
T . The mass flux is: ρu⃗x+∆x(u⃗ · n⃗)x+∆x = ρu⃗x+∆xux+∆x = ρ(u u⃗)x+∆x, and

the momentum flux is:

I⃗right ≡ I⃗x+∆x =

∫ y+∆y

y

ρ(u u⃗)x+∆x dy = ρ

∫ y+∆y

y

u2

uv


x+∆x

dy ≈ ρ

u2

uv


x+∆x

∆y. (2.40)

• Bottom face (at y) with normal vector n⃗y = (0,−1)T and components of the velocity u⃗y =

(uy, vy)
T . The mass flux is: ρu⃗y(u⃗ · n⃗)y = ρu⃗y(−vy) = ρ(−v u⃗)y, and the momentum flux is:

I⃗bottom ≡ I⃗y =

∫ x+∆x

x

ρ(−v u⃗)y dx = −ρ
∫ x+∆x

x

uv

v2


y

dx ≈ −ρ

uv

v2


y

∆x. (2.41)

• Top face (y+∆y) with normal vector n⃗y+∆y = (0, 1)T and components of the velocity u⃗y+∆y =

(uy+∆y, vy+∆y)
T . The mass flux is: ρu⃗y+∆y(u⃗ · n⃗)y+∆y = ρu⃗y+∆y vy+∆y = ρ(v u⃗)y+∆y, and the momen-

tum flux is:

I⃗top ≡ I⃗y+∆y =

∫ x+∆x

x

ρ(v u⃗)y+∆y dx = ρ

∫ x+∆x

x

uv

v2


y+∆y

dx ≈ ρ

uv

v2


y+∆y

∆x. (2.42)

The net momentum flux is obtained after combining the contributions of all faces:

I⃗ =

∮
CS

ρu⃗(u⃗ · n⃗) dS = I⃗left + I⃗right + I⃗bottom + I⃗top

=

ρ(u2x+∆x − u2x
)
∆y + ρ

[
(uv)y+∆y − (uv)y

]
∆x

ρ
[
(uv)x+∆x − (uv)x

]
∆y + ρ

(
v2y+∆y − v2y

)
∆x

 . (2.43)

Note that we dropped the overbar notation for the averages for simplicity.

1The approximation arises because we replace the integral of the generally varying function f(y) over [y, y +∆y]
by the product of the interval length ∆y and a representative value f(y). For example, using the left-endpoint (Euler
forward) average, f(y) = f(y). This is exact only if f(y) is constant; otherwise, it is an approximation, which improves
as ∆y → 0.
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2.5 Conservation of linear momentum

2.5.1 Surface forces (pressure + viscous stresses)

The surface force F⃗surface =
∮
CS
T⃗ dS includes the pressure forces and viscous (shear) stresses, i.e.:

F⃗surface =

∮
CS

T⃗ dS =

∮
CS

T⃗pressure dS +

∮
CS

T⃗stress dS = F⃗pressure + F⃗stress, (2.44)

where

T⃗pressure = −pn⃗, T⃗stress = τ̂ · n⃗. (2.45)

• Let us calculate the pressure force first. Along the x-direction one has (dS ≈ ∆y):

−
∮
pxnx dS −

∮
px+∆xnx+∆x dS ≈ − (px+∆x − px)∆y, (2.46)

where nx = −1 and nx+∆x = 1. Along y-direction (dS ≈ ∆x):

−
∮
pyny dS −

∮
py+∆yny+∆y dS ≈ − (py+∆y − py)∆x, (2.47)

where ny = −1 and ny+∆y = 1. Therefore, the total pressure force is:

F⃗pressure =

− (px+∆x − px)∆y

− (py+∆y − py)∆x

 . (2.48)

Note that in the calculations above we also used the Euler average rule (2.39).

• To find the viscous force contribution we compute the traction on each face:

J⃗left =

∮
CS

(τ̂ · n⃗) dS
∣∣
x
=

∫ y+∆y

y

(τ̂ · n⃗) dS
∣∣
x
≈ (τ̂ · n⃗)|x∆y =

 τ
xx

τ
xy

τ
xy

τ
yy

 ·

−1

0

∆y =

−τxx|x
−τxy|x

∆y,

J⃗right =

∮
CS

(τ̂ · n⃗) dS
∣∣
x+∆x

=

∫ y+∆y

y

(τ̂ · n⃗) dS
∣∣
x+∆x

≈ (τ̂ · n⃗)|x+∆x∆y =

 τxx τxy

τ
xy

τ
yy

·

1

0

∆y =

τxx|x+∆x

τxy|x+∆x

∆y,

J⃗bottom =

∮
CS

(τ̂ · n⃗) dS
∣∣
y
=

∫ x+∆y

x

(τ̂ · n⃗) dS
∣∣
y
≈ (τ̂ · n⃗)|y∆x =

 τxx τxy

τxy τyy

 ·

 0

−1

∆x =

−τxy|y
−τyy|y

∆x,
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2.5 Conservation of linear momentum

J⃗top =

∮
CS

(τ̂ · n⃗) dS
∣∣
y+∆y

=

∫ x+∆x

x

(τ̂ · n⃗) dS
∣∣
y+∆y

≈ (τ̂ · n⃗)|y+∆y∆x =

 τ
xx

τ
xy

τ
xy

τ
yy

 ·

0

1

∆x =

τxy|y+∆y

τyy|y+∆y

∆x.

Note that in the calculations above we used the Euler average rule (2.39). The total viscous force is:

F⃗stress =

∮
CS

T⃗stress dS = J⃗left + J⃗right + J⃗bottom + J⃗top

=

(τxx|x+∆x − τxx|x)∆y + (τxy|y+∆y − τxy|y)∆x

(τxy|x+∆x − τxy|x)∆y + (τyy|y+∆y − τyy|y)∆x

 . (2.49)

• We can now obtain the final integral momentum equations (2.31),

I⃗ = F⃗pressure + F⃗stress, (2.50)

by combining all terms from (2.43), (2.48) and (2.49). Therefore, the x-momentum equation is:

ρ
(
u2x+∆x − u2x

)
∆y + ρ

[
(uv)y+∆y − (uv)y

]
∆x

= − (px+∆x − px)∆y + (τxx|x+∆x − τxx|x)∆y + (τxy|y+∆y − τxy|y)∆x, (2.51)

and the y-momentum equation is:

ρ
[
(uv)x+∆x − (uv)x

]
∆y + ρ

(
v2y+∆y − v2y

)
∆x

= − (py+∆y − py)∆x+ (τxy|x+∆x − τxy|x)∆y + (τyy|y+∆y − τyy|y)∆x. (2.52)

Let us divide these equations by ∆x∆y:

ρ
u2x+∆x − u2x

∆x
+ ρ

(uv)y+∆y − (uv)y
∆y

= −px+∆x − px
∆x

+
τxx|x+∆x − τxx|x

∆x
+
τxy|y+∆y − τxy|y

∆y
, (2.53)

ρ
(uv)x+∆x − (uv)x

∆x
+ ρ

v2y+∆y − v2y
∆y

= −py+∆y − py
∆y

+
τxy|x+∆x − τxy|x

∆x
+
τyy|y+∆y − τyy|y

∆y
. (2.54)
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2.5 Conservation of linear momentum

Let us take the limits ∆x,∆y→0 in the first Eq. (2.53) and use the definition of the derivative:

ρ
u2x+∆x − u2x

∆x
→ ρ

∂

∂x
(u2), ρ

(uv)y+∆y − (uv)y
∆y

→ ρ
∂

∂y
(uv), (2.55)

−px+∆x − px
∆x

→ −∂p
∂x
,

τxx|x+∆x − τxx|x
∆x

→ ∂τxx
∂x

,
τxy|y+∆y − τxy|y

∆y
→ ∂τxy

∂y
. (2.56)

Hence the differential form of Eq. (2.53) is:

ρ
∂

∂x
(u2) + ρ

∂

∂y
(uv) = −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

. (2.57)

We can rewrite the left-hand side in more common form by the product-rule expansions:

∂

∂x
(u2) = 2u

∂u

∂x
,

∂

∂y
(uv) = u

∂v

∂y
+ v

∂u

∂y
, (2.58)

hence:
∂

∂x
(u2) +

∂

∂y
(uv) = 2u

∂u

∂x
+ u

∂v

∂y
+ v

∂u

∂y
. (2.59)

Now invoke incompressibility (∇· u⃗ = 0), i.e.
∂u

∂x
+
∂v

∂y
= 0, which gives u

∂v

∂y
= −u∂u

∂x
. Substituting:

2u
∂u

∂x
+ u

∂v

∂y
+ v

∂u

∂y
= 2u

∂u

∂x
− u

∂u

∂x
+ v

∂u

∂y
= u

∂u

∂x
+ v

∂u

∂y
. (2.60)

Thus Eq. (2.57) becomes:

ρ
(
u
∂u

∂x
+ v

∂v

∂y

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

. (2.61)

Let us now treat the viscous terms. For a Newtonian incompressible fluid with constant µ:

τxx = 2µ
∂u

∂x
, τxy = µ

(∂u
∂y

+
∂v

∂x

)
. (2.62)

Next we differentiate:
∂τxx
∂x

= 2µ
∂2u

∂x2
,

∂τxy
∂y

= µ
(∂2u
∂y2

+
∂2v

∂x∂y

)
. (2.63)
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2.5 Conservation of linear momentum

Now we add up:
∂τxx
∂x

+
∂τxy
∂y

= 2µ
∂2u

∂x2
+ µ

∂2u

∂y2
+ µ

∂2v

∂x∂y
. (2.64)

One can use incompressibility differentiated with respect to x:

∂2u

∂x2
+

∂2v

∂x∂y
= 0 ⇒ ∂2v

∂x∂y
= −∂

2u

∂x2
. (2.65)

Substitute back into (2.64) to find:

∂τxx
∂x

+
∂τxy
∂y

= 2µ
∂2u

∂x2
+ µ

∂2u

∂y2
− µ

∂2u

∂x2
= µ

(∂2u
∂x2

+
∂2u

∂y2

)
= µ∇2u. (2.66)

Putting everything together yields the familiar x-momentum PDE:

ρ
(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ∇2u. (2.67)

Similarly, one can treat the y-momentum Eq. (2.54). Let us write them both here explicitly:

• The x-momentum equation:

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
. (2.68)

• The y-momentum equation:

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (2.69)

In conclusion, the integral momentum conservation for 2d flow through a rectangle involves mo-

mentum flux (convection) across all faces, pressure forces, and viscous stresses. In the limit of an

infinitesimal CV, we recover the Navier-Stokes equations (2.68) and (2.69) for 2d incompressible flow.
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2.5 Conservation of linear momentum

2.5.2 Navier-Stokes equations for incompressible flow

We are ready to write the final form of the 3d Navier-Stokes equations for incompressible flow, which

are the momentum conservation equations (2.68) and (2.69):

ρ

(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗

)
= −∇p+ µ∇2u⃗, (2.70)

which we can write in components using u⃗ = (u, v, w)T :

x−momentum : ρ

(
∂u

∂t
+ u⃗ · ∇u

)
= −∂p

∂x
+ µ∇2u, (2.71)

y −momentum : ρ

(
∂v

∂t
+ u⃗ · ∇v

)
= −∂p

∂y
+ µ∇2v, (2.72)

z −momentum : ρ

(
∂w

∂t
+ u⃗ · ∇w

)
= −∂p

∂z
+ µ∇2w. (2.73)

Using the definition of the material derivative:

Du⃗

Dt
=
∂u⃗

∂t
+ (u⃗ · ∇)u⃗, (2.74)

we can write the NS equations above in a compact vector form:

ρ
Du⃗

Dt
= −∇p+ µ∇2u⃗. (2.75)

This formulation is coordinate-invariant and valid for any inertial reference frame. Note that for

compressible flows, additional terms would appear, and ρ would vary spatially.
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2.6 The first law of thermodynamics

2.6 The first law of thermodynamics

The first law of thermodynamics states that the change in total energy E of a fluid system equals

the heat Q added to the system minus the work W done by the system1:

dE = δQ− δW, (2.76)

where δ is used to represent an inexact differential (process dependent quantity). We can divide by

dt to get the time-dependent form of the first law:

dE

dt
=
δQ

dt
− δW

dt
= Q̇− Ẇ . (2.77)

• The total energy of a fluid in a control volume is given by:

E(t) =

∫∫∫
CV

ρ(x⃗, t) ε(x⃗, t) dV =

∫∫∫
CV

ρε dV, (2.78)

where ρ is the mass density, ε is energy per unit mass, and dV is an infinitesimal volume element.

Since the CV is not fixed (it moves or deform with time), the time derivative cannot pass inside the

integral and the rate of change of the total energy is:

dE

dt
=

d

dt

∫∫∫
CV

(
ρε
)
dV. (2.79)

However, the Reynolds Transport Theorem (2.29) says that for a scalar quantity Φ and its density

ϕ one has the relation:
dΦ

dt
=

∫
CV

∂ϕ

∂t
dV +

∫
CS

ϕ(u⃗ · n⃗) dA. (2.80)

Applying for ϕ = ρε we can write:

dE

dt
=

∫∫∫
CV

∂(ρε)

∂t
dV +

∫∫
CS

ρε(u⃗ · n⃗) dA, (2.81)

where CS is the control surface with infinitesimal surface element dA and an outward unit normal

1In this convention of the first law: heat is positive when entering the control volume, and work is positive when
done by the system on the surroundings.
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2.6 The first law of thermodynamics

vector n⃗. The first term is the local (fixed point) rate of change of energy inside the volume. The

second term accounts for the net rate at which energy is carried in or out by the fluid moving through

the control surface.

• The heat transfer rate (Q̇) into the CV is defined by1:

Q̇ = −
∫∫

CS

q⃗ · n⃗ dA+

∫∫∫
CV

q̇v dV, (2.82)

where q⃗ = −κ∇T (Fourier’s law) is the heat flux vector, κ is the thermal conductivity, and q̇v is an

internal heat generation also known as the volumetric heat generation rate (W/m3).

• Finally, the work done by the fluid for unit time (Ẇ ) is2:

Ẇ =

∫∫
CS

p(u⃗ · n⃗) dA︸ ︷︷ ︸
Pressure work

−
∫∫

CS

u⃗ · (τ̂ · n⃗) dA︸ ︷︷ ︸
Viscous work

. (2.83)

Therefore, the integral form of the first law of thermodynamics for a control volume is:

∫∫∫
CV

∂(ρε)

∂t
dV +

∫∫
CS

ρε(u⃗ · n⃗) dA

=

(
−
∫∫

CS

q⃗ · n⃗ dA+

∫∫∫
CV

q̇v dV

)
−
(∫∫

CS

p(u⃗ · n⃗) dA−
∫∫

CS

u⃗ · (τ̂ · n⃗) dA
)
. (2.84)

1The minus sign in front of the surface integral comes from the convention that q⃗ · n⃗ is the outward flux (positive
when heat leaves the CV). Since q⃗ · n⃗ is the outward conductive flux, the surface term with a leading minus is the heat
into the CV. The volumetric source q̇v > 0 adds heat inside – both are heat into the system

2Due to our convention of the first law dE = δQ− δW , the quantity Ẇ is the rate of work done by the system on
its surroundings, thus the signs of the integrals are correct, otherwise if Ẇ is the work done on the system, the overall
sign should be reversed. To see this start from the Cauchy stress σ̂ = −pÎ + τ̂ . The power of the surface traction
acting on the control volume is:

Ẇon CV =

∫∫
CS

u⃗·(σ̂ · n⃗) dA =

∫∫
CS

u⃗·(−pn⃗+ τ̂ · n⃗) dA = −
∫∫

CS

p(u⃗ · n⃗) dA+

∫∫
CS

u⃗·(τ̂ · n⃗) dA.

So here the pressure contribution appears with a minus sign. However, in our convention of the first law Ẇ is the rate
of work done by the system on the surroundings, then:

Ẇ = −Ẇon CV =

∫∫
CS

p(u⃗ · n⃗) dA−
∫∫

CS

u⃗·(τ̂ · n⃗) dA.
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2.6 The first law of thermodynamics

We can now use the Divergence Theorem for an arbitrary vector field F⃗ (x⃗, t),

∫∫
CS

(F⃗ · n⃗) dA =

∫∫∫
CV

(∇ · F⃗ ) dV, (2.85)

to convert all surface integrals (CS) into volume integrals (CV), hence:

∫∫∫
CV

[
∂(ρε)

∂t
+∇ · (ρεu⃗)

]
dV =

∫∫∫
CV

[
−∇ · q⃗ + q̇v −∇ · (pu⃗) +∇ · (τ̂ · u⃗)

]
dV. (2.86)

Note that the conversion of the viscous work term is:

∫∫
CS

u⃗ · (τ̂ · n⃗) dA =

∫∫∫
CV

∇ · (τ̂ · u⃗) dV. (2.87)

Since this integral equation must hold for any arbitrary control volume, the integrands must be equal.

This gives the differential form of the energy equation (the first law of thermodynamics):

∂(ρε)

∂t
+∇ · (ρεu⃗) = −∇ · q⃗ + q̇v −∇ · (pu⃗) +∇ · (τ̂ · u⃗). (2.88)

For constant in space ρ and p one recovers Eq. (2.7):

ρ

(
∂ε

∂t
+ u⃗ · ∇ε

)
= −p(∇ · u⃗) + Φ +∇ · (κ∇T ) + ρq̇, (2.89)

where Φ = ∇ · (τ̂ · u⃗) represents the viscous dissipation function, q⃗ = −κ∇T (Fourier’s law) is the

heat flux vector, and q̇v = ρq̇ with q̇being the internal heat-generation rate per unit mass (W/kg).

Note that the general expression is Φ = τ̂ : ∇u⃗ = τ ij∇iuj differs from Φ = ∇ · (τ̂ · u⃗) in Eq.

(2.89). However, using tensor calculus one has:

∇ · (τ̂ · u⃗) = ∇k(τ
kjuj) = (∇kτ

kj)uj + τ kj∇kuj, (2.90)

hence:

∇ · (τ̂ · u⃗) = (∇ · τ̂) · u⃗+ τ̂ : (∇u⃗)T . (2.91)
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2.6 The first law of thermodynamics

For Newtonian fluids, τ̂ is symmetric (τ ij = τ ji), which implies:

τ̂ : (∇u⃗)T = τ ij(∇u⃗)Tji = τ ij∇jui. (2.92)

Since τ̂ is symmetric, we can relabel indices i↔ j:

τ ij∇jui = τ ji∇jui = τ ij∇iuj. (2.93)

Additionally, ∇ · τ̂ = 0, when viscous dissipation is balanced by work done by viscous stresses at

boundaries, with no net force on fluid elements (i.e. non-zero viscosity vs. zero net viscous force)1.

Therefore, in this special case, Φ = τ̂ : ∇u⃗ ∼ ∇ · (τ̂ · u⃗).

In the following, we apply the fundamental equations of fluid mechanics and their solutions to

analyze basic two-dimensional flows around a circular cylinder and a Joukowski airfoil.

1It signifies that viscous stresses are self-equilibrating. They cause local deformation (and dissipation) but no net
force on fluid parcels.
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Chapter 3

Axisysmetric Airflow in 2d

Chapter objectives: We study a two-dimensional steady uniform flow past a circular cylinder

of radius R in the so called Kutta–Joukowski setup. The aim is to derive key flow quantities,

including the velocity potential, stream function, pressure distribution, and lift force. This chapter

demonstrates the power and the applicability of fluid dynamics equations considered in the previously.

3.1 Basic assumptions and equations

3.1.1 Basic assumptions

We consider a 2d, steady, incompressible, inviscid, irrotational flow around a circle (cylinder) of

radius R with circulation Γ. The goal is to derive:

1. The velocity potential ϕ and stream function ψ.

2. The velocity field u⃗ = (u, v) on and around the cylinder

3. The pressure distribution p using Bernoulli’s equation.

4. The lift force (Magnus force) using the Kutta-Joukowski theorem.

To obtain analytical solutions to the governing equations of fluid dynamics, we impose the fol-

lowing assumptions (by neglecting some effects for potential flow):

• No viscosity (µ = 0): Removes the Navier-Stokes viscous term ∇ · τ̂ = 0 from Eq. (2.4).
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3.1 Basic assumptions and equations

• Incompressibility (ρ = constant): Continuity equation (2.2) reduces to ∇ · u⃗ = 0.

• No body forces (f⃗ = 0): No gravity or external forces.

• Steadiness (∂tu⃗ = 0): Steady flow.

• No vorticity (∇× u⃗ = 0): Irrotational flow (except at singularities).

3.1.2 Simplified equations

In this case the simplified equations are:

1. Continuity (incompressibility) (2.2) reduces to:

∇ · u⃗ = 0. (3.1)

2. NS equation (2.4) reduces to Euler’s equation (inviscid momentum):

ρ(u⃗ · ∇)u⃗ = −∇p. (3.2)

3. Irrotationality condition (introducing the velocity potential ϕ via the Helmholtz theorem):

∇× u⃗ = 0 ⇒ u⃗ = ∇ϕ = (∂xϕ, ∂yϕ) = (u, v). (3.3)

4. Bernoulli’s equation (for steady, inviscid, irrotational flow):

p+
1

2
ρ|u⃗|2 = p∞ +

1

2
ρU2 = constant. (3.4)

It is a consequence of the first law of thermodynamic. We show its derivation in Appendix

A. Here, p∞ is static flow pressure far from any bodies, and U is the x-component of the flow

velocity also far from any emersed bodies.

29



3.1 Basic assumptions and equations

3.1.3 Free-stream velocity

Here, the free-stream velocity U > 0 is defined as the undisturbed flow velocity far from any

boundaries or objects (sometimes U∞):

U⃗ = lim
r→∞

u⃗(r, θ) = (U, 0)T , (3.5)

where (r, θ) are the polar coordinates on the 2d xy plane. It represents the constant fluid speed

in the absence of disturbances. Its direction aligned with the positive x-axis: U⃗ = (U, 0), thus its

magnitude is positive U > 0.

For potential flow around a cylinder with circulation Γ, the velocity components in polar coordi-

nates (r, θ) are (see Sec. 3.3):

ur =
∂ϕ

∂r
= U

(
1− R2

r2

)
cos θ, (3.6)

uθ =
1

r

∂ϕ

∂θ
= −U

(
1 +

R2

r2

)
sin θ +

Γ

2πr
. (3.7)

As distance from the cylinder increases (r → ∞) one has (far-field behavior):

ur → U cos θ, uθ → −U sin θ. (3.8)

Converting to Cartesian components (using rotational transfer matrix) one finds:

u = ur cos θ − uθ sin θ →
r→∞

U cos2 θ + U sin2 θ = U, (3.9)

v = ur sin θ + uθ cos θ →
r→∞

U cos θ sin θ − U sin θ cos θ = 0, (3.10)

thus confirming u⃗→ (U, 0). The physical significance of U is related to:

• The dynamic pressure via the Bernoulli’s equation:

p∞ +
1

2
ρU2 = constant, (3.11)
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3.1 Basic assumptions and equations

• The lift force1 (Kutta-Joukowski Theorem):

L = ρUΓ, (3.12)

as defined in Sec. 4.7, shows that the lift per unit length is directly proportional to U .

• Stagnation points, locations where |u⃗| = 0, depend on U :

sin θstag =
Γ

4πRU
(for |Γ| ≤ 4πRU). (3.13)

• Reynolds2 number3:

Re =
ρUD

µ
, (3.14)

where ρ is the fluid density, D is the characteristic length scale (for a cylinder, this is its diameter),

µ is the dynamic viscosity of the fluid.

3.1.4 Circulation

In fluid dynamics, circulation Γ is a measure of the “rotation” or “swirl” of a velocity field around a

closed curve. Mathematically, it is defined by the Stokes integral:

Γ =

∮
C

u⃗ · d⃗l, (3.15)

where C is a closed contour (a loop) in the flow, u⃗ is the velocity vector field, d⃗l is the line element

tangent to the contour. It tells us how much the fluid circulates around C. By Stokes’ theorem,

1Actually the lift force L per unit length is the force perpendicular to the free stream.
2Osborne Reynolds (1842–1912) was an Irish-born British engineer and physicist, best known for his pioneering

experiments on the transition between laminar and turbulent flow in pipes. He introduced the dimensionless Reynolds
number, which characterizes flow regimes and remains a cornerstone of fluid mechanics.

3Reynolds number compares inertial forces to viscous forces:

Re =
inertial effects

viscous effects
.

High Re: inertia dominates – flow tends to be turbulent. Low Re: viscosity dominates – flow tends to be laminar. For
flow around a cylinder of diameter D in free stream velocity U : Re < 1 – creeping (Stokes) flow. For 103 ≲ Re ≲ 2×105

– laminar vortex shedding. For Re ≳ 2× 105 – transition to turbulence.
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3.2 Stream function vs. velocity potential

circulation is related to the vorticity ω⃗ = ∇× u⃗ inside the surface S spanned by C:

Γ =

∫∫
S

(∇× u⃗) · n⃗ dS =

∫∫
S

ωn dS, (3.16)

where ωn is the component of vorticity normal to the surface. In potential (irrotational) flow,

circulation is zero unless a vortex or a lifting object (like an airfoil) is present. For lift generation

(Kutta–Joukowski theorem), circulation plays a central role (see Sec. 4.7):

L = ρUΓ, (3.17)

where L is the lift force per unit span length (force per meter), i.e. per unit length along the axis of

the cylinder (or wing span).

3.2 Stream function vs. velocity potential

In order to describe the potential flow around a 2d circle (cylinder) one has to introduce the so-called

stream function ψ and velocity potential ϕ. By definition one has:

• Stream function (ψ):

– Defined for incompressible flows (∇ · u⃗ = 0), i.e. ensures mass conservation.

– Exists only in 2d (or axisymmetric 3d flows).

– It is the imaginary part of the complex flow potential defined in Sec. 4.

• Velocity potential (ϕ):

– Defined for irrotational flows (∇×u⃗ = 0, thus u⃗ = ∇ϕ), i.e. ensures energy conservation.

– Exists in 2d and 3d.

– Related to mechanical work of the flow: ϕ =
∫
u⃗ · dr⃗, since u⃗ = ∇ϕ.

– It is the real part of the complex flow potential defined in Sec. 4.

The relation to velocity components is given by:
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3.2 Stream function vs. velocity potential

• 2d Cartesian coordinates (x, y):

Stream Function: u =
∂ψ

∂y
, v = −∂ψ

∂x
,

Velocity Potential: u =
∂ϕ

∂x
, v =

∂ϕ

∂y
.

• 2d polar coordinates (r, θ):

Stream Function: ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
,

Velocity Potential: ur =
∂ϕ

∂r
, uθ =

1

r

∂ϕ

∂θ
.

The defining equations are:

Stream Function (ψ) Velocity Potential (ϕ)

Continuity Automatically satisfied: Requires Laplace’s equation:

(∇ · u⃗ = 0) ∇ · u⃗ ≡ 0 ∇2ϕ = 0

Irrotationality Requires Laplace’s equation: Automatically satisfied:

(∇× u⃗ = 0) ∇2ψ = 0 ∇× u⃗ ≡ 0

The physical interpretation of these potentials is:

Stream Function (ψ) Velocity Potential (ϕ)

Constant ψ: Defines streamlines Constant ϕ: Defines equipotential lines

(paths tangent to flow direction) (lines of constant mechanical work)

Boundary Condition: Boundary Condition:

ψ = constant on solid boundaries ∂ϕ
∂n

= 0 on solid boundaries

(no-penetration condition) (no-penetration condition)
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3.3 Potential flow around a cylinder with circulation

Orthogonality in potential flow. For incompressible and irrotational flows the streamlines

(ψ = constant) and equipotential lines (ϕ = constant) form an orthogonal networks, i.e. ∇ϕ·∇ψ = 0.

This follows from the Cauchy-Riemann equations:

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
. (3.18)

Example: Uniform flow U in x-direction (see Sec. 3.3):

ψ = Uy, ϕ = Ux.

Streamlines: y = constant Equipotentials: x = constant

Example: Flow around cylinder with a radius R amd nonzero circulation Γ (see Sec. 3.3):

ϕ = U

(
r +

R2

r

)
cos θ +

Γ

2π
θ, (3.19)

ψ = U

(
r − R2

r

)
sin θ − Γ

2π
ln
r

R
. (3.20)

3.3 Potential flow around a cylinder with circulation

This is also known as the Kutta1-Joukowski2 setup – a classical model of lift in inviscid, incom-

pressible, irrotational flow around a cylinder or an airfoil, where circulation is introduced. It’s the

framework that leads to the Kutta-Joukowski theorem for lift (see Sec. 4.7).

1Martin Wilhelm Kutta (1867–1944) was a German mathematician and aerodynamicist. He introduced the Kutta
condition (see Sec. 4.5), which determines how flow departs from the trailing edge of an airfoil, and co-formulated the
Kutta–Joukowski lift theorem (see Sec. 4.7). He is also well known in mathematics for developing the Runge–Kutta
methods for solving differential equations, still widely used in numerical analysis today.

2Nikolai Yegorovich Zhukovsky (1847–1921), often transliterated as Joukowski, was a Russian scientist regarded as
the founder of Russian aerodynamics. He independently derived the lift theorem and pioneered the use of conformal
mapping to transform circles into airfoil shapes, laying the foundation for modern airfoil theory. His institute in
Moscow later became central to the development of Soviet aeronautics.
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3.3 Potential flow around a cylinder with circulation

3.3.1 Flow decomposition

The flow is constructed by superimposing three types of simple flows: uniform flow + doublet flow1

+ vortex flow as shown in Figure 3.1.

(a) (b) (c)

Figure 3.1 (a) Uniform Flow U⃗ = (U, 0). (b) Doublet Flow (Cylinder). (c) Vortex Flow (Γ).

The total flow combines:

u⃗total = u⃗uniform + u⃗doublet + u⃗vortex, (3.21)

where U scales the uniform and doublet components:

• Uniform flow (velocity u in x-direction):

ϕuniform = Ux = Ur cos θ, ψuniform = Uy = Ur sin θ. (3.22)

• Doublet flow (represents the cylinder):

ϕdoublet =
κ cos θ

r
, ψdoublet = −κ sin θ

r
, (3.23)

where κ = UR2 ensures no flow penetration at r = R.

• Point vortex (adds circulation Γ):

ϕvortex =
Γθ

2π
, ψvortex = − Γ

2π
ln
r

R
. (3.24)

1The doublet (or dipole) flow is inside the cylinder and therefore does not affect the external flow, but it ensures
the no-penetration boundary condition on the cylinder surface.
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3.3 Potential flow around a cylinder with circulation

• Combined potential and stream function:

ϕ = ϕuniform + ϕdoublet + ϕvortex = U

(
r +

R2

r

)
cos θ +

Γθ

2π
, (3.25)

ψ = ψuniform + ψdoublet + ψvortex = U

(
r − R2

r

)
sin θ − Γ

2π
ln
r

R
. (3.26)

Figure 3.2 Streamlines of a steady flow around a circle.

(a) Uniform + doublet flow. (b) Uniform + doublet + circulation flow.

Figure 3.3 Flows without (a) and with circulation (b) (generated by Mathematica’s StreamlinePlot[]
command). The doublet (or dipole) flow is inside the cylinder and therefore does not affect the
external flow, but it ensures the no-penetration boundary condition on the cylinder surface.

3.3.2 Velocity field

We can now compute the components of the velocity field in polar coordinates:

ur =
∂ϕ

∂r
= U

(
1− R2

r2

)
cos θ, (3.27)
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3.3 Potential flow around a cylinder with circulation

uθ =
1

r

∂ϕ

∂θ
= −U

(
1 +

R2

r2

)
sin θ +

Γ

2πr
. (3.28)

In Sec. 3.5 we show that they satisfy the simplified equations from Sec. 3.1.2 for steady, incompress-

ible, inviscid, irrotational flow with circulation. On the cylinder surface (r = R) one has:

ur = 0 (no flow through boundary), (3.29)

uθ = −2U sin θ +
Γ

2πR
. (3.30)

3.3.3 Pressure distribution

The pressure distribution comes from the Bernoulli’s equation (3.4):

p∞ +
1

2
ρU2 = p+

1

2
ρ|u⃗|2 = constant along a streamline, (3.31)

which can be solved with respect to the pressure of the fluid flow:

p = p∞ +
1

2
ρU2 − 1

2
ρ|u⃗|2. (3.32)

Here the magnitude of the flow velocity |u⃗| is given by

|u⃗|2 = u2r + u2θ = U2 cos2 θ

(
R2

r2
− 1

)2

+

[
sin θ

(
R2U

r2
+ U

)
− Γ

2πr

]2
. (3.33)

where ur and uθ are defined in (3.27) and (3.28). On the cylinder (r = R) one has:

|u⃗|2 = u2θ =

(
−2U sin θ +

Γ

2πR

)2

, (3.34)

p = p∞ +
1

2
ρU2 − 1

2
ρ|u⃗|2 = p∞ +

1

2
ρU2 − 1

2
ρ

(
−2U sin θ +

Γ

2πR

)2

. (3.35)

Here p = p(R, θ) is the local pressure at the cylinder surface, and p∞ is the static pressure far from

the cylinder, where the velocity tends to the uniform free–stream U (the free-stream (reference)

pressure).
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3.3 Potential flow around a cylinder with circulation

3.3.4 Lift Force (Kutta-Joukowski Theorem)

Kutta-Joukowski lift. The lift force (per unit length) is the force perpendicular to the free stream

(along x). For a circular cylinder C(0, R) of radius R in a 2d flow, the force in the vertical direction

y (lift) comes from integrating the pressure around the surface (see Sec. 4.7):

L = −
∮
C

p sin θ R dθ = −
∫ 2π

0

p sin θ R dθ (y-direction). (3.36)

Substituting p from (3.35) and integrating over θ one finds:

L = −
∫ 2π

0

[
p∞ +

1

2
ρU2 − 1

2
ρ

(
−2U sin θ +

Γ

2πR

)2
]
sin θ R dθ. (3.37)

After simplification we arrive at the Kutta-Joukowski formula for the lift force:

L = ρUΓ. (3.38)

Magnus force. In addition, if the cylinder rotates uniformly with angular velocity ω, the circulation

is give by:

Γ =

∮
C

u⃗ · d⃗l =
∫ 2π

0

uθ(R, θ)Rdθ = 2πR2ω, (3.39)

where for a circular contour of radius R around the cylinder, the differential line element is tangential,

d⃗l = êθRdθ, and the Cartesian components of the velocity are:

u = ur cos θ − uθ sin θ, v = ur sin θ + uθ cos θ. (3.40)

Here uθ = ωR and we also used the orthogonality of the polar basis vectors: ur êr · êθ = 0. This

leads to the so-called Magnus lift force:

L = ρUΓ = 2πρUR2ω. (3.41)
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3.4 Summary

Drag force (D’Alembert’s paradox). For inviscid potential flow, the drag force is zero:

D = −
∮
p cos θ R dθ = 0 (x-direction). (3.42)

This is D’Alembert’s paradox, which states that there is no drag in ideal flow (viscosity is needed

for drag).

3.4 Summary

Here we present all results for the flow around the cylinder in 2d:

1. Velocity potential:

ϕ = U

(
r +

R2

r

)
cos θ +

Γθ

2π
. (3.43)

2. Stream function:

ψ = U

(
r − R2

r

)
sin θ − Γ

2π
ln
( r
R

)
. (3.44)

3. Surface velocity:

uθ = −2U sin θ +
Γ

2πR
. (3.45)

4. Lift force (Kutta-Joukowski):

L = ρUΓ. (3.46)

5. Magnus force:

L = 2πρUR2ω. (3.47)

6. Drag force (D’Alembert’s paradox):

D = 0. (3.48)

This completes the traditional analytical analysis of potential flow around a cylinder with circu-

lation, including lift, drag and Magnus force calculations.
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3.5 Equations check

3.5 Equations check

We show that the velocity components in polar coordinates from Eqs. (3.27) and (3.28):

ur =
∂ϕ

∂r
= U

(
1− R2

r2

)
cos θ, (3.49)

uθ =
1

r

∂ϕ

∂θ
= −U

(
1 +

R2

r2

)
sin θ +

Γ

2πr
. (3.50)

satisfy the simplified equations from Section 3.1.2 for steady, incompressible, inviscid, irrotational

flow with circulation.

1. Continuity (incompressibility). In polar coordinates the condition reads:

∇ · u⃗ =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

= 0, (3.51)

which is satisfied identically since (ur, uθ) are derived from a potential that solves Laplace’s equation.

A simple differentiation of ur and uθ also confirms this conclusion.

2. Euler’s equation (inviscid momentum). It is given by:

ρ(u⃗ · ∇)u⃗ = −∇p. (3.52)

For potential flow, this condition is automatically satisfied once p is defined through Bernoulli’s

equation as in Eq. (3.32):

p = p∞ +
ρU2

2
− 1

2
ρ

[
U2 cos2 θ

(
R2

r2
− 1

)2

+

(
sin θ

(
R2U

r2
+ U

)
− Γ

2πr

)2
]
. (3.53)

In this case:

ρ(u⃗·∇)u⃗ = −∇p ⇐⇒


ρ

(
ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

− u2θ
r

)
= − ∂p

∂r
,

ρ

(
ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

)
= − 1

r

∂p

∂θ
,
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3.5 Equations check

where the pressure gradient is

∇p = ∂p

∂r
êr +

1

r

∂p

∂θ
êθ. (3.54)

Inserting p, ur and uθ, one notes these equations are satisfied.

3. Irrotationality.

∇× u⃗ = 0 ⇒ 1

r

∂

∂r

(
r uθ

)
− 1

r

∂ur
∂θ

= 0. (3.55)

Without circulation (Γ = 0), the flow is irrotational everywhere. For Γ ̸= 0, the flow remains

irrotational except at the origin, where the vortex singularity is located.

4. Bernoulli’s equation. It is determined by:

p+ 1
2
ρ|u⃗|2 = p∞ + 1

2
ρU2 = constant along a streamline. (3.56)

Therefore, pressure is:

p = p∞ +
1

2
ρU2 − 1

2
ρ|u⃗|2, (3.57)

where |u⃗|2 = u2r + u2θ is shown explicitly in Eq. (3.33). Thus, the pressure distribution follows from

the velocity field, with the constant fixed by the far-field condition u⃗→ U êx and p→ p∞ as r → ∞.

Conclusion. The velocity components (ur, uθ) therefore constitute the classical potential flow so-

lution around a cylinder with circulation, satisfying the simplified governing equations of incompress-

ible, inviscid, irrotational flow.
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Chapter 4

Joukowski Airfoil Theory

Chapter Objectives: We find the aerodynamic flow around airfoils using the Joukowski transfor-

mation, a complex-variable conformal mapping technique that transforms a circle into a symmetric

or cambered airfoil shape. By analyzing potential flow around a circle and applying the Joukowski

map, the behavior of ideal, inviscid flow around an airfoil can be studied analytically. We use the

following references: [9–11].

4.1 Complex potential for ideal fluid flow in 2d

We saw that for ideal potential (irrotational) flows the velocity potential ϕ and the streamfunction

ψ fully defined the flow field basically replacing the velocity vector as the variable of interest. In

arriving at a representation of the flow using complex variables we recall the standard representation

of a complex variable:

z = x+ iy = r(cos θ + i sin θ) = reiθ, (4.1)

where a point in the 2d fluid plane is a complex number z = x+ iy. Since both ϕ and ψ satisfy the

Laplace equation ∇2f = 0, they are harmonic functions. As such we saw that they they satisfy the

Cauchy-Riemann conditions by:

u =
∂ϕ

∂x
=
∂ψ

∂y
, v =

∂ϕ

∂y
= −∂ψ

∂x
, (4.2)

42



4.2 Flow around a circle

where u⃗ = (u, v) are the Cartesian components of the velocity. Because of this ϕ and ψ are orthogonal

to each other, ∇ϕ · ∇ψ = 0, and it is possible to use one or the other to represent the flow.

A new complex function (potential) can be defined, whose real and imaginary parts are the

velocity potential and the streamfunction as:

Φ(z) = ϕ(z) + iψ(z). (4.3)

Thus, the derivative of Φ in terms of z is defined as:

W =
∂Φ

∂z
= u− iv, (4.4)

where u⃗ = (u, v)T = (∂xϕ, ∂yϕ)
T = (∂yψ,−∂xψ)T . The function W (z) is called complex velocity

of the flow. The explicit derivation of this formula is presented in Appendix B. The advantage of

the complex variable formulations is that the function W (z) allows us to use the full power of the

complex analysis to describe flows in 2d [1, 12, 13].

It is often convenient to use cylindrical coordinates (r, θ) in two dimensions. The transformation

from (x, y) to (r, θ) is given by:

u = ur cos θ − uθ sin θ, (4.5)

v = ur sin θ + uθ cos θ. (4.6)

The expression for the complex velocity W is then (by direct substitution and using Euler’s identity,

cos θ ± i sin θ = e±iθ):

W = (ur − iuθ)e
−iθ. (4.7)

4.2 Flow around a circle

The potential for a uniform flow with speed U around a circle of radius R centered at z0 (its offset),

with circulation Γ, is:

Φ(z) = U

(
(z − z0) +

R2

z − z0

)
− iΓ

2π
ln(z − z0), (4.8)
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4.2 Flow around a circle

where z0 is the center of the circle. In order to prove this formula, we start from polar coordinates

representation of the velocity potential ϕ (3.43) and the stream function ψ (3.44) of the complex

potential:

Φ = ϕ+ iψ = U

[(
r +

R2

r

)
cos θ + i

(
r − R2

r

)
sin θ

]
+

Γθ

2π
− i

Γ

2π
ln
r

R
. (4.9)

Recall that reiθ = r(cos θ + i sin θ) = z and 1
z
= 1

reiθ
= 1

r
e−iθ. Now look at the combination:

(
r +

R2

r

)
cos θ + i

(
r − R2

r

)
sin θ = r cos θ + ir sin θ︸ ︷︷ ︸

reiθ

+
R2

r
(cos θ − i sin θ)︸ ︷︷ ︸

e−iθ

= z +
R2

z
. (4.10)

That’s the uniform flow + doublet flow in complex form. For the circulation terms one has:

Γθ

2π
− i

Γ

2π
ln
r

R
=

Γ

2π

(
θ − i ln

r

R

)
=

Γ

2π

(
θ − i(ln r − lnR)

)
=

Γ

2π
(θ − i ln r + i lnR)

=
1

i

Γ

2π
(iθ + ln r︸ ︷︷ ︸

ln z

− lnR) = −i Γ
2π

ln
z

R
. (4.11)

Note that since z = reiθ, then ln z = ln(reiθ) = ln r + iθ. Now insert (4.10) an (4.11) back into (4.9)

to find the complex flow potential around a circle centered in the origin (z0 = 0):

Φ(z) = U
(
z +

R2

z

)
− iΓ

2π
ln
z

R
. (4.12)

To place the center of the circle at an arbitrary point z0 we just shift the center z → z − z0:

Φ(z) = U

[
(z − z0) +

R2

z − z0

]
− iΓ

2π
ln
z − z0
R

. (4.13)

Note (vortex rotation): For a vortex of strength Γ at the origin:

ϕvortex = ± Γ

2π
θ, ψvortex = ∓ Γ

2π
ln
r

R
, (4.14)

where r, θ are polar coordinates. The sign of Γ indicates clockwise vs counterclockwise circulation.

The ± in ϕvortex is tied to which direction you take θ as positive (usually counterclockwise). For the
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4.3 Milne-Thomson circle theorem

standard convention (counterclockwise positive circulation) the vortex potential is:

wvortex(z) =
iΓ

2π
ln z. (4.15)

Then ϕ = − Γ
2π
θ and ψ = Γ

2π
ln r

R
. Note that till now our working convention above was the clockwise

circulation. We can write the total complex flow potential as:

Φ(z) = U

[
(z − z0) +

R2

z − z0

]
± iΓ

2π
ln
z − z0
R

. (4.16)

4.3 Milne-Thomson circle theorem

Another mathematical way of arriving at (4.8) is the Milne-Thomson circle theorem. It is a

fundamental result in fluid dynamics used to find the new fluid flow pattern when a circular cylinder

is placed into a known two-dimensional, irrotational flow. Let the complex potential of an existing

fluid flow be described by the analytic function f(z), where z = x + iy. Suppose all singularities of

f(z) are outside the circle |z| = R. If a solid circular cylinder of radius R, centered at the origin, is

introduced into this flow, the new complex potential, Φ(z), for the flow outside the cylinder is given

by:

Φ(z) = f(z) + f

(
R2

z̄

)
. (4.17)

Here, overline means complex conjugate. We leave this theorem without prove, however we show

how it works for a uniform flow. Consider a uniform flow of speed U in the positive x-direction. The

complex potential for this flow alone is:

Φuniform(z) = Uz ≡ f(z). (4.18)

Now, we want to introduce an impermeable circular cylinder of radius R centered at the origin. The

boundary condition on the cylinder surface (|z| = R) is that there is no flow normal to the surface,

which means the cylinder must be a streamline (ψ = constant).

According to the Milne-Thomson circle theorem, if f(z) is the complex potential for a flow in an

infinite domain, and there are no singularities inside the circle |z| = R, then the complex potential
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4.4 The Joukowski transformation

for the same flow with an impermeable circular cylinder of radius R centered at the origin is given

by Eq. (4.17). For uniform flow f(z) = Uz, thus

Φ(z) = Uz + U

(
R2

z̄

)
= Uz + U

R2

z
= U

(
z +

R2

z

)
, (4.19)

where we use that U is a real constant, and fg = f̄ ḡ. This is exactly the uniform flow given by

Eq. (4.12), in the absence of circulation, for a circle C(0, R) centered at the origin. Recall that the

Uz term represents the uniform free stream flow, and the U R2

z
term represents a doublet (or dipole)

at the origin. This singularity is inside the cylinder and therefore does not affect the external flow,

but it ensures the no-penetration boundary condition on the cylinder surface.

4.4 The Joukowski transformation

The transformation maps the z-plane (circle) to the ζ-plane (airfoil):

ζ(z) = z +
c2

z
. (4.20)

To create an airfoil with a sharp trailing edge, the circle in the z-plane must pass through the point

z = c ∈ R+. For a circle with center z0 = m+ in, where m,n ∈ R, the radius R is determined by:

R = |c− z0| =
√
(c−m)2 + n2. (4.21)

The inverse transformation is1:

z(ζ) =
ζ +

√
ζ2 − 4c2

2
. (4.22)

The Joukowski transformation uses the parameters of the initial circle to determine the final

shape of the airfoil. Here is how each parameter affects the geometry:

1The transformation maps the z-plane (circle) to the ζ-plane (airfoil). The circle is the input shape that is being
acted upon by the functionζ(z). This circle is specifically designed to pass through the point z = c in order to produce
an airfoil with a sharp trailing edge. The center and radius of the circle are determined by the complex numbers
z0 = m + in and R = |c − z0|, respectively. Essentially, the circle is the original geometry that you are deforming.
The transformation takes a simple shape (a circle) and, by using a complex function, maps its points to create a more
complex, aerodynamically useful shape (an airfoil).
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4.4 The Joukowski transformation

• The pole c: This value is a crucial point on the real axis (i.e. is a positive real number). It

defines the location of the two singular points, or poles, of the transformation at z = c. The

existence of these poles is what allows the transformation to create the sharp trailing edge of

an airfoil. A key property of the Joukowski transformation is that the circle in the z-plane

must pass through the point z = c. The pole at z = c in the transformation maps the point

on the circle to a cusp, or a sharp point, on the resulting airfoil. This cusp corresponds to the

trailing edge of the airfoil. The magnitude of c scales the overall size of the airfoil.

• The number m (real part of the circle’s center z0) determines the airfoil’s camber, or the

curvature of the mean line. Increasing the value of m relative to c makes the airfoil more

curved, which can increase lift at a given angle of attack.

• The number n (imaginary part of the circle’s center z0) controls the airfoil’s thickness. In-

creasing the absolute value of n makes the airfoil thicker. A thicker airfoil can provide more

structural strength and can be designed for higher lift.

• The parameter R (the radius of the circle) is not an independent variable but is derived from

the other parameters using the equation R = |c − z0|. It defines the size of the circle that is

being transformed.

Figure 4.1 Joukowski transformation of a circle with radius R = 6.67 and parameters: z0 =
(0.5, 1.5) = (m,n), c = 7 (see App. C for Mathematica code).
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4.5 Kutta Condition

4.5 Kutta Condition

The Kutta condition states that the flow must leave the sharp trailing edge smoothly, which implies

the velocity there is finite. We achieve this by setting the velocity to zero at the point z = c in the

circle plane. The complex velocity for the flow around the offset circle is:

W =
dΦ

dz
= U

(
1− R2

(z − z0)2

)
− iΓ

2π(z − z0)
. (4.23)

Set dW
dz

= 0 at z = c:

U

(
1− R2

(c− z0)2

)
− iΓ

2π(c− z0)
= 0. (4.24)

Using R2 = |c− z0|2 = (c− z0)(c− z0)
∗, where ∗ denotes the complex conjugate, one has:

U

(
1− (c− z0)(c− z0)

∗

(c− z0)2

)
=

iΓ

2π(c− z0)
⇒

U

(
1− (c− z0)

∗

(c− z0)

)
=

iΓ

2π(c− z0)
⇒

U
(
(c− z0)− (c− z0)

∗) = iΓ

2π
(4.25)

We can deal with the expression in the brackets by substituting z0 = m+ in:

(c− z0)− (c− z0)
∗ = ((c−m)− in)− ((c−m) + in) = −2in. (4.26)

Inserting back to (4.25) and solving for the circulation Γ one finds:

Γ = −4πnU. (4.27)

This shows that the circulation required for smooth flow is directly proportional to the camber

parameter n. Note that the lift now is (the minus sign accounts for the clockwise circulation):

L = −ρUΓ = 4πρnU2. (4.28)

In order to show that this is the result for the lift, we need the Blasius theorem.
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4.6 The Blasius theorem

4.6 The Blasius theorem

TheBlasius Theorem is a fundamental result in potential flow theory that relates the hydrodynamic

force (lift and drag) on a two-dimensional body to the complex velocity potential of the flow around

it. It is particularly useful in aerodynamics for calculating forces on airfoils without viscosity. It

states that for a steady, incompressible, irrotational (potential) 2d flow around a body, the net force

(per unit span) acting on the body is given by the contour integral:

Fx − iFy =
iρ

2

∮ (
dΦ

dz

)2

dz, (4.29)

where Fx is the force component in the x-direction (drag, in the absence of viscosity, should be zero),

Fy is the force component in the y-direction (lift), ρ is the fluid density, and Φ(z) is the complex

flow potential. The integral is taken counterclockwise around the body (in case of a clockwise

circulation there is an additional minus sign).

The theorem is derived from Bernoulli’s equation and the Cauchy residue theorem.

1. Pressure Force on the Body: The force acting on the body is due to pressure p. The

infinitesimal force components on a small segment dz of the contour are:

dFx = −p dy, dFy = p dx. (4.30)

Thus, the total force (per unit span) is:

Fx = −
∮
p dy, Fy =

∮
p dx. (4.31)

In complex form one has:

Fx − iFy = −
∮
p(dy + idx) = −i

∮
p dz∗, (4.32)

where dz∗ = dx− idy is the complex conjugate of dz.
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4.7 Lift and Drag (Kutta-Joukowski Theorem)

2. Bernoulli’s Equation: For steady, inviscid, incompressible flow, Bernoulli’s equation gives:

p = p∞ +
1

2
ρU2 − 1

2
ρ|u⃗|2, (4.33)

where |u⃗|2 = u2 + v2 =
∣∣dΦ
dz

∣∣2. Since p∞ and 1
2
ρU2 are constant, they integrate to zero around

a closed contour, leaving:

Fx − iFy =
iρ

2

∮ ∣∣∣∣dΦdz
∣∣∣∣2 dz. (4.34)

3. Complex Velocity Squared: Using
∣∣dΦ
dz

∣∣2 = (
dΦ
dz

) (
dΦ
dz

)∗
, but since dΦ

dz
is analytic outside the

body, we can evaluate it using residues. For large |z|, the dominant term is often a vortex or

doublet contribution:
dΦ

dz
≈ U +

iΓ

2πz
+ . . . (4.35)

Squaring and applying the residue theorem leads to the Kutta-Joukowski lift formula, as we

show below.

4.7 Lift and Drag (Kutta-Joukowski Theorem)

The aerodynamic force is calculated with the Blasius formula. For simplicity, we perform the integral

around a circle at the origin, as the net force is independent of the offset:

Fx − iFy =
iρ

2

∮
C

(
dΦ

dz

)2

dz. (4.36)

The potential for a circle at the origin is (counterclockwise circulation):

Φ(z) = U
(
z +

R2

z

)
+
iΓ

2π
ln
z

R
. (4.37)

The derivative is:
dΦ

dz
= U

(
1− R2

z2

)
+

iΓ

2πz
. (4.38)
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4.7 Lift and Drag (Kutta-Joukowski Theorem)

Squaring this expression one finds:

(
dΦ

dz

)2

=

[
U

(
1− R2

z2

)
+

iΓ

2πz

]2
= U2

(
1− 2R2

z2
+
R4

z4

)
+

2UiΓ

2πz

(
1− R2

z2

)
− Γ2

4π2z2
. (4.39)

By the Residue Theorem, the integral
∮
C
f(z)dz is 2πi

∑
Res(f, zk). The only pole inside the contour

C is at z = 0. We need the coefficient of the z−1 term of (dΦ
dz
)2. The only term contributing to this

is the cross-term:
2UiΓ

2πz

(
1− R2

z2

)
=
iUΓ

πz
− iUΓR2

πz3
. (4.40)

The residue is the coefficient of the 1/z term:

Res

[(
dΦ

dz

)2

, z = 0

]
=
iUΓ

π
. (4.41)

Now, we evaluate the integral:

∮
C

(
dW

dz

)2

dz = 2πi

(
iUΓ

π

)
= −2UΓ. (4.42)

Substitute this result back into the Blasius formula (4.29) one finds:

Fx − iFy =
iρ

2
(−2UΓ) = −iρUΓ. (4.43)

Equating the real and imaginary parts one finally gets (for counterclockwise circulation):

Fx = 0 (Drag), (4.44)

Fy ≡ L = ρUΓ (Lift). (4.45)

For clockwise circulation the lift is L = −ρUΓ. This is a bit confusing sometimes. The lift L is the

force exerted on the body by the fluid, which is the reaction force to Fy. Thus, L = −Fy by some

conventions, or we can define Fy as lift itself. If we define lift L as the positive upward force on the

airfoil, and the circulation Γ is positive (counter-clockwise), then the force is upward.
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Chapter 5

Effective Description of the Airfoil

Chapter Objectives: We discuss the main characteristics of the airfoil and present some simulated

models of a wing on Boeing 737-800 airplane.

5.1 Basics of airfoils

Figure 5.1 Basic characteristics of the airfoil (Wikipedia).

An airfoil is a specially designed cross-sectional shape of an aircraft wing, tail, or blade that enables

the generation and control of aerodynamic forces during flight. Its geometry is carefully engineered

to create a pressure difference between the upper and lower surfaces as air flows past, producing lift

to support the aircraft’s weight while also influencing drag, stability, and overall efficiency. The basic
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5.1 Basics of airfoils

characteristics of the airfoil are [11, 14, 15]:

• Leading Edge: The leading edge is the forward-most part of an airfoil, the point that first

meets the oncoming airflow. Its shape is critical because it determines how smoothly the air can

begin flowing over the upper and lower surfaces. A well-rounded leading edge helps delay flow

separation and reduces the risk of stalling, while sharper designs can improve efficiency at specific

flight conditions. By controlling how the air initially divides, the leading edge plays a fundamental

role in the generation of lift and in the overall aerodynamic performance of the airfoil.

• Trailing Edge: The trailing edge is the rearmost part of an airfoil, where the airflow that has

traveled along the upper and lower surfaces comes together and leaves the wing. Its design strongly

influences how smoothly the two streams of air merge, which in turn affects lift, drag, and overall

aerodynamic efficiency. A sharp trailing edge helps guide the flow cleanly downstream, minimizing

turbulence and drag, while also determining how circulation around the airfoil is established according

to the Kutta condition. In many cases, movable control surfaces such as ailerons, elevators, or flaps

are attached near the trailing edge, allowing pilots to adjust lift, maneuverability, and stability during

flight.

• Chord Line: The chord line is an imaginary straight line that connects the leading edge to the

trailing edge of an airfoil. It serves as a fundamental reference in aerodynamics, providing a baseline

for measuring key geometric and aerodynamic parameters. Most importantly, it is used to define

the angle of attack, which is the angle between the chord line and the oncoming airflow (relative

wind). The chord line is also essential in describing the camber (the curvature of the airfoil) and the

thickness distribution. Because of its role as a reference axis, the chord line is central to analyzing

and predicting the lift, drag, and stability characteristics of an airfoil.

• Camber: Camber refers to the curvature of an airfoil’s surfaces, typically measured as the

deviation of the mean camber line (the curve midway between the upper and lower surfaces) from

the chord line. It is one of the most important geometric features influencing how an airfoil generates

lift. A positively cambered airfoil has a more pronounced curvature on the upper surface and a flatter

lower surface, which accelerates airflow above the wing, reduces pressure, and produces greater lift.

Conversely, a symmetrical airfoil (zero camber) generates little or no lift at zero angle of attack but

can still produce lift when tilted relative to the oncoming airflow. The degree and distribution of
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5.1 Basics of airfoils

camber strongly affect not only lift but also drag, stall behavior, and aerodynamic efficiency, making

it a central parameter in wing design.

• Upper Surface: The upper surface of an airfoil is typically curved and plays a crucial role in

the production of lift. As air flows over this surface, the curvature causes the airflow to accelerate,

which according to Bernoulli’s principle results in a region of lower pressure compared to the air

moving beneath the wing. This pressure difference between the upper and lower surfaces is a pri-

mary contributor to lift generation. The exact shape of the upper surface—its smoothness, degree

of curvature (camber), and thickness distribution – greatly influences the magnitude of lift, drag

characteristics, and stall behavior of the airfoil.

• Lower Surface: The lower surface of an airfoil is generally flatter than the upper surface,

which helps maintain relatively higher pressure as air flows beneath the wing. This higher pressure,

combined with the lower pressure generated over the curved upper surface, creates a pressure dif-

ferential that produces lift. The thickness and shape of the lower surface also influence the overall

structural strength of the wing, the aerodynamic drag, and the onset of flow separation at high angles

of attack. In many airfoil designs, subtle shaping of the lower surface is used to optimize lift-to-drag

ratios and ensure stable airflow under varying flight conditions.

• Angle of Attack: The angle of attack (AoA) is defined as the angle between the chord line

of an airfoil and the direction of the oncoming airflow, often referred to as the relative wind. By

adjusting this angle, pilots can directly control the lift and drag forces acting on the wing. Increasing

the angle of attack generally increases lift up to a certain point, but if it becomes too steep, the

airflow can separate from the upper surface, leading to a stall and a sudden loss of lift. Proper

management of the angle of attack is therefore critical during key flight operations such as takeoff,

landing, and maneuvering, as it balances the need for lift with aerodynamic efficiency and safety.

• Thickness: The thickness of an airfoil refers to the distance between its upper and lower

surfaces, usually measured perpendicular to the chord line. Thickness is a critical factor in both

aerodynamic performance and structural design. Thicker airfoils can generate more lift due to in-

creased surface area and favorable pressure distribution, but they often experience higher drag, which

can reduce overall efficiency. Conversely, thinner airfoils produce less drag and may be better suited

for high-speed flight but generate less lift and may stall more abruptly. The distribution of thickness

along the chord, not just the maximum thickness, also affects airflow behavior, lift characteristics,

54



5.1 Basics of airfoils

and stall performance, making it an essential consideration in airfoil design.

• Camber Line: The camber line is an imaginary line drawn midway between the upper and

lower surfaces of an airfoil, effectively representing the average curvature of the wing. It serves as a

key reference for quantifying the amount and distribution of camber in the airfoil’s design. The shape

of the camber line determines how the airfoil generates lift: a more pronounced curvature typically

produces greater lift at lower angles of attack, while a flatter camber line results in more neutral

lift characteristics, as seen in symmetric airfoils. By analyzing the camber line, aerodynamicists

can predict pressure distribution, optimize lift-to-drag ratios, and assess stall behavior, making it a

fundamental tool in wing design.

• Lift Force: Lift is the aerodynamic force that acts perpendicular to the oncoming airflow,

allowing an aircraft to become airborne and remain in flight. It is primarily generated by the air-

foil’s shape, especially its curvature (camber) and angle of attack, which create a pressure difference

between the lower and upper surfaces. Faster airflow over the upper surface produces lower pressure,

while slower airflow beneath maintains higher pressure, resulting in an upward force. The magni-

tude of lift depends on factors such as airspeed, air density, wing area, and the airfoil’s geometry.

Proper management of lift is essential for takeoff, cruising, maneuvering, and landing, as it directly

counteracts the aircraft’s weight.

• Drag Force: Drag is the aerodynamic force that opposes the motion of an aircraft through

the air, acting parallel and opposite to the relative airflow. It arises from air resistance against

the aircraft’s surfaces, including the airfoil, and is influenced by factors such as airspeed, air density,

surface roughness, and the shape of the wing. Airfoils contribute to drag in two main ways: form drag,

caused by the shape of the airfoil, and skin friction, caused by friction between the air and the surface.

Pilots can indirectly control drag by adjusting the angle of attack – the angle between the chord line

of the airfoil and the oncoming airflow – which simultaneously affects lift. Proper management of

drag is essential during takeoff, landing, and maneuvers to maintain efficiency, stability, and safe

operation.
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5.2 Models of the wing of Boeing 737-800

5.2 Models of the wing of Boeing 737-800

To demonstrate the applicability of fluid mechanics, we present velocity (Fig. 5.2) and pressure (Fig.

5.3) distribution models around the wing of a Boeing 737-800. The flow fields were generated using

SOLIDWORKS simulations. The initial conditions correspond to a flight altitude of 9000m, with a

freestream velocity of approximately U = 227m/s. At this altitude, the ambient pressure is about

one-third of the standard atmospheric pressure, and the temperature is 0◦C. Both models are at the

same angle of attack.

The simulations illustrate that regions of higher airflow velocity (yellow–red in Fig. 5.2) corre-

spond to lower pressure zones (cyan–blue in Fig. 5.3). This inverse relationship between velocity

and pressure is a direct consequence of Bernoulli’s principle, which states that along a streamline,

an increase in fluid speed is accompanied by a decrease in static pressure.

As a result, the pressure on the upper surface of the wing is lower than that on the lower surface,

generating a net upward force known as lift. The greater the velocity difference between the upper

and lower surfaces, the larger the pressure difference, and hence the greater the lift. This effect is

also consistent with the Kutta-Joukowski theorem, which relates lift per unit span to the circulation

of the flow around the airfoil.

In summary, the models demonstrate the fundamental aerodynamic mechanism of lift: the wing

geometry shapes the flow so that high-velocity, low-pressure regions develop over the wing, producing

the net upward force that enables sustained flight.
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5.2 Models of the wing of Boeing 737-800

(a) Velocity around Boeing 737-800 (side). (b) Velocity around Boeing 737-800 (top).

Figure 5.2 (a) Velocity field flow around Boeing 737-800 wing from the side of the airplane. (b)
Velocity field flow around Boeing 737-800 wing on the top of the airplane. The models are generated
by SOLIDWORKS software. The free velocity of the flow at height of 9000m is U = 227m/s. The
pressure at that height is 1/3 of the standard atmosphere. Temperature is 0◦ Celsius.

(a) Pressure for Boeing 737-800 (top). (b) Pressure for Boeing 737-800 (below).

Figure 5.3 (a) Pressure field flow around Boeing 737-800 wing from the top of the wing. (b)
Pressure field flow around Boeing 737-800 wing from below of the wing. The models are generated
by SOLIDWORKS software. The free velocity of the flow at height of 9000m is U = 227m/s. The
pressure at that height is 1/3 of the standard atmosphere. Temperature is 0◦ Celsius.
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Chapter 6

Conclusions

In this thesis, we investigated the foundations of fluid mechanics and their application to aerodynamic

lift generation. Starting from the conservation laws of mass, energy, and momentum, we derived

the governing equations of fluid flow under simplified assumptions. Within the Kutta-Joukowski

framework, we analyzed two-dimensional flow past a circular cylinder, obtaining explicit results for

the velocity field, pressure distribution, and aerodynamic forces. Extending this framework through

the Joukowski transformation, we demonstrated how airfoil geometries can be generated from circular

profiles and studied the corresponding potential flow solutions.

To connect theory with practice, we modeled the velocity and pressure distributions around a

Boeing 737-800 wing. The simulations supported the theoretical analysis, showing roughly that re-

gions of higher velocity correspond to lower pressure and thus generate lift. This agreement illustrates

the enduring relevance of classical fluid mechanics in describing both idealized systems and practical

engineering applications.

Looking ahead, future work can proceed along two complementary directions. On the theoretical

side, incorporating viscous effects and boundary layer theory would provide a more realistic descrip-

tion of lift, drag, separation, and other aerodynamic phenomena. Extensions to three-dimensional,

compressible, and turbulent flows would further enrich the analytical framework. On the engineering

side, high-fidelity computational fluid dynamics (CFD) simulations and wind tunnel experiments

could refine the study of real wing geometries, including modern design features such as winglets1,

high-lift devices, and blended wing bodies2.

1Winglets are small vertical or angled extensions at the tips of an aircraft’s wings that reduce drag and improving
fuel efficiency and range.

2Blended wing body (BWB) is an aircraft design where the fuselage and wings form a single smoothly integrated

58



In conclusion, this work demonstrates how classical fluid mechanics, combined with mathematical

tools such as complex analysis, provides both a rigorous theoretical foundation and a practical

framework for understanding and improving aerodynamic performance, while also opening avenues

for future research at the intersection of theory and engineering practice.

shape, improving lift-to-drag ratio, fuel efficiency, and internal volume compared to conventional tube-and-wing de-
signs.
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Appendix A

Derivation of Bernoulli equation

We will derive Bernoulli’s equation rigorously from the fundamental equations of fluid mechanics,

explaining each physical and mathematical step.

Start with the Navier-Stokes momentum equation for an incompressible, viscous flow:

ρ

(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗

)
= −∇p+ µ∇2u⃗+ ρf⃗ . (A.1)

For inviscid flow (µ = 0) and in the absence of external body forces (f⃗ = 0), this reduces to the

Euler equation:
∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = −1

ρ
∇p. (A.2)

Let us now rewrite the acceleration (convective) term using the following vector identity:

(u⃗ · ∇)u⃗ = ∇
(
|u⃗|2

2

)
− u⃗× (∇× u⃗). (A.3)

This splits the acceleration into: a kinetic energy gradient ∇(|u⃗|2/2) and a vorticity-dependent term

u⃗× (∇× u⃗). Now, assume an irrotational flow (∇× u⃗ = 0). Substituting into Euler’s equation one

finds:
∂u⃗

∂t
+∇

(
|u⃗|2

2

)
= −1

ρ
∇p. (A.4)

Recall the velocity potential (u⃗ = ∇ϕ), thus:

∂

∂t
(∇ϕ) +∇

(
|∇ϕ|2

2

)
= −1

ρ
∇p. (A.5)
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Since time and space derivatives commute (∇∂tϕ = ∂t∇ϕ), this becomes:

∇
(
∂ϕ

∂t
+

|∇ϕ|2

2
+
p

ρ

)
= 0. (A.6)

A gradient of zero implies the argument is spatially constant:

∂ϕ

∂t
+

|∇ϕ|2

2
+
p

ρ
= C(t), (A.7)

where C(t) is a time-dependent constant (uniform in space). For a steady flow (∂tϕ = 0), thus:

p

ρ
+

1

2
|u⃗|2 = constant. (A.8)

One can also include gravity, if it is significant, by just adding the potential energy term ρgz to the

pressure:
p

ρ
+

1

2
|u⃗|2 + gz = constant. (A.9)
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Appendix B

Derivation of the Complex Velocity

B.1 Wirtinger derivatives

Let’s first derive the Wirtinger derivatives from the change of variables x, y ↔ z, z̄:

z = x+ iy, z̄ = x− iy ⇒ x =
z + z̄

2
, y =

z − z̄

2i
. (B.1)

We can treat z and z̄ as independent variables and apply the chain rule:

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
. (B.2)

Differentiate the expressions for x, y with respect to z (holding z̄ fixed):

∂x

∂z
=

1

2
,

∂y

∂z
=

1

2i
= − i

2
. (B.3)

This leads to:
∂

∂z
=

1

2

∂

∂x
+

1

2i

∂

∂y
=

1

2

( ∂

∂x
− i

∂

∂y

)
. (B.4)

Similar calculations follow for the conjugate operator ∂/∂z̄:

∂

∂z̄
=
∂x

∂z̄

∂

∂x
+
∂y

∂z̄

∂

∂y
, (B.5)

with
∂x

∂z̄
=

1

2
,

∂y

∂z̄
= − 1

2i
=
i

2
, (B.6)

which leads to:
∂

∂z̄
=

1

2

( ∂

∂x
+ i

∂

∂y

)
. (B.7)
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B.2 Derivation of the complex velocity potential

So the final Wirtinger derivatives are:

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1

2

( ∂

∂x
+ i

∂

∂y

)
. (B.8)

B.2 Derivation of the complex velocity potential

Start with:

Φ(x, y) = ϕ(x, y) + iψ(x, y), z = x+ iy. (B.9)

Apply the Wirtinger operator:
∂Φ

∂z
=

1

2

(∂Φ
∂x

− i
∂Φ

∂y

)
. (B.10)

Compute ∂Φ/∂x and ∂Φ/∂y:

∂Φ

∂x
= ϕx + iψx,

∂Φ

∂y
= ϕy + iψy. (B.11)

Now apply ∂/∂z:

∂Φ

∂z
=

1

2

[
(ϕx + iψx)− i(ϕy + iψy)

]
=

1

2

[
ϕx + iψx − iϕy + ψy

]
. (B.12)

Next, we use the Cauchy–Riemann relations for an analytic Φ:

ϕx = ψy, ϕy = −ψx. (B.13)

Substitute them back into the bracket to obtain:

∂Φ

∂z
=

1

2

[
ϕx + i(−ϕy)− iϕy + ϕx

]
=

1

2

[
2ϕx − 2iϕy

]
= ϕx − iϕy. (B.14)

Finally, we replace ϕx = u and ϕy = v:
∂Φ

∂z
= u− iv. (B.15)
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Appendix C

The Joukowski Transformation

This chapter provides a demonstration of the Joukowski transformation using Mathematica. The

transformation maps a circle in the complex z-plane to an airfoil in the ζ-plane, where the shape of

the airfoil is determined by the properties of the initial circle. The transformation is defined by the

equation:

ζ(z) = z +
c2

z
. (C.1)

A key requirement for generating an airfoil with a sharp trailing edge is that the circle must pass

through the point z = c, where c is a positive real number.

C.1 Mathematica Code

The following code plots both the original circle and the resulting airfoil, illustrating the effect of the

transformation on Figure 4.1.

(* Define the parameters for the transformation *);

c = 7; (* the length of the airfoil is approximately 2c *);

m = 0.5 (* the approximate thickness of the airfoil *);

n = -1.5 (* the approximate curved shape of the airfoil *);

z0 = m + I*n;

(* Calculate the radius of the circle, which must pass through z = c *)

R = Abs[c - z0];
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C.2 Explanation of the Code

(* Define the complex variable for the circle *)

z[theta_] = z0 + R*Exp[I*theta];

(* Define the Joukowski transformation *)

joukowski[z_] = z + c^2/z;

(* Apply the transformation to the circle *)

zeta[theta_] = joukowski[z[theta]];

(* Plot the original circle *)

circlePlot = ParametricPlot[{Re[z[theta]], Im[z[theta]]}, {theta, 0, 2*Pi},

PlotStyle -> {Thick, Blue},

PlotLabel -> "Joukowski Transformation",

AspectRatio -> Automatic];

(* Plot the resulting airfoil *)

airfoilPlot = ParametricPlot[{Re[zeta[theta]], Im[zeta[theta]]}, {theta, 0, 2*Pi},

PlotStyle -> {Thick, Red}];

(* Show both plots together *)

Show[circlePlot, airfoilPlot,

AxesLabel -> {"x", "y"},

PlotRange -> All,

ImageSize -> Medium]

C.2 Explanation of the Code

• Defining Parameters: The code sets the values for the pole c and the center of the circle

z0 = m + in. The radius R is automatically calculated to ensure the circle passes through

z = c.

• Defining the Circle: The complex variable z(θ) = z0 + Reiθ is used to represent the points

on the circle parametrically.

• Defining the Transformation: The function joukowski[z] is a direct implementation of

the transformation equation.

• Applying the Transformation: The transformation is applied to the circle’s parametric

equation, resulting in the function ζ(θ).
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C.2 Explanation of the Code

• Plotting: The Mathematica function ‘ParametricPlot‘ is used to plot the real and imaginary

parts of both the original circle and the resulting airfoil. The ‘Show‘ command is then used to

display both plots on the same graph for comparison.
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